Appendix 7.1

The Tecpro Building, Clonshaugh Business & Technology Park, Dublin 17, Ireland.

T: + 353 1 847 4220 F: + 353 1 847 4257 E: info@awnconsulting.com W: www.awnconsulting.com

Environmental Due Dilligence - Cornelscourt, Co. Dublin.

Technical Report Prepared For

Dunnes Stores 46-50 South Great George's Street, Dublin 2.

Technical Report Prepared By

Colm Driver BSc MSc Teri Hayes BSc MSc PGeo

Our Reference

TH/18/10021WR02

Date Of Issue

16th September 2018

 Cork Office

 Unit 5, ATS Building,

 Carrigaline Industrial Estate,

 Carrigaline, Co. Cork.

 T: + 353 21 438 7400

 F: + 353 21 483 4606

AWN Consulting Limited Registered in Ireland No. 319812 Directors: F Callaghan, C Dilworth, T Donnelly, T Hayes, D Kelly, E Porter

Document History

Document Reference		Original Issue Date			
TH/18/10021WR02		16 th Sept 2018			
Revision Level	Revision Date	Description	Sections Affected		

Record of Approval

Details	Written by	Approved by
Signature	Ċ	Jen Hanger
Name	Colm Driver	Teri Hayes
Title	Environmental Consultant	Director (Water)
Date	16 th Sept 2018	16 th Sept 2018

EXECUTIVE SUMMARY

AWN Consulting Limited (AWN) was requested by Dunnes Stores to carry out a soil quality assessment and risk assessment at the lands in Cornelscourt, Co. Dublin (Figure 1).

The investigation was undertaken to assess the current soil quality beneath the site with a particular focus on the nature of any residual contamination at the site that may be relevant to the redevelopment of the site. Site investigations (seventeen trial pits and four pilot holes), gas sampling and representative soil sample collection were carried out between $9^{th} - 13^{th}$ March 2018.

Based on the physical observations, gas and laboratory results, a localised area of residual hydrocarbon related contamination was confirmed to be present in the soil at the downgradient boundary of the adjacent petrol station (north west boundary). The extent of area impacted by residual hydrocarbon type contamination is 960m²⁻ (refer to Figure 3). The contamination is most evident within a natural CLAY and the underlying gravelly Clay horizon c. 2mbgl (metres below ground level) and 3.50mbgl, respectively No free phase hydrocarbons were identified in the shallow water table or soil which indicates an older leak most likely originating from the upgradient petrol station. No evidence of contamination was identified elsewhere on site.

Representative soil samples were analysed for hydrocarbon contaminants of concern. As there are no legislative or guideline soil quality standards in Ireland, results were compared to a UK Generic Assessment Criteria (GAC) derived to be protective of human health and also ecology for a residential and commercial/industrial end use (LQM/CIEH S4ULs). No exceedances of residential or commercial thresholds have been identified for any contaminants of concern (refer to Table 1). To further assess the risk of the localised residual hydrocarbon contamination for future use of the site, AWN completed a detailed quantitative risk assessment (DQRA) using the RISC Model. RISC enables the site-specific assessment of likely risk to site end users and enables the determination of whether or not it is acceptable for soil concentrations to remain in the ground. It was concluded that there is no risk for redevelopment of the site for an apartment type development.

To investigate the suitability of soil for disposal if required as part of any future redevelopment, two soil samples were collected from within the area with residual hydrocarbon contamination and compared against Waste Acceptance Criteria (WAC). The WAC analysis is not indicative of the potential future use of the land for development but rather for identification of suitability for licenced disposal. The results identified that the soil closer to the boundary with petrol station falls under Category D – Hazardous due to the concentration of mineral oil, e.g. <500mg/kg present in the sample. The sample collected further from the petrol station is suitable for classification as Category A – Inert.

In conclusion, most of the site investigated was found to be uncontaminated. However, a localised shallow residual hydrocarbon contamination has been identified in the north west of the property with a likely extent of 960m². Completion of a Generic qualitative risk assessment (GQRA) and Detailed Quantitative Risk Assessment show that the site is suitable for redevelopment for residential or commercial development.

The following table summarises the overall environmental sensitivity of the site in terms of its environs.

Parameter	Comment	Environmental Sensitivity
Site location	The site is located in Cornelscourt, Co. Dublin and is mostly a greenfield site and temporary car park (Figure 1). There are no known previous uses other than agricultural. The site is immediately downgradient of a petrol station and residual hydrocarbon contamination exists ⁱⁿ the northwest of the land holding (aerial extent of 960 m ² Figure 3). immediately downgradient of the petrol station. The rest of the land holding was confirmed as uncontaminated. Completion of a GQRA and DQRA has shown that the site in its current state is suitable for redevelopment.	Low - Moderate
Geology and Hydrogeology	The site is underlain by Granite bedrock (which is described by the GSI as a Poor Aquifer (PI). The aquifer vulnerability is indicated as being High based on the shallow depth to rock. There are no existing groundwater wells located in close proximity to the site. The area is generally serviced by public water supply.	Low
Surface Water	The Cabinteely Stream is located approximately 400m to the southwest of the site. There is no direct connectivity between the residual contamination and this receptor.	Low
Flooding	There is no record of flooding at this location.	Low

Table of Contents

1.0	INTR	ODUCTION	6			
	1.1	Site Description & Outline of Site Investigation	6			
	1.2	Land Use	7			
2.0	SOIL	QUALITY ASSESSMENT GUIDELINES	8			
3.0	SITE	INVESTIGATION FINDINGS	10			
	3.1	Soil Logging	10			
	3.2	Laboratory Results	10			
	3.2.1	Waste Acceptance Criteria (WAC) Analysis	14			
3.3	Grou	nd Gas Assessment	14			
3.4	Sum	mary of Soil Conditions	14			
LIMITA	LIMITATIONS OF REPORT					

APPENDICES

Appendix A Soil Logs Appendix B Laboratory report Appendix C Model Input Appendix D Model Output

1.0 INTRODUCTION

AWN Consulting Limited (AWN) was requested by Dunnes Stores to carry out a soil quality assessment at the lands in Cornelscourt, Co. Dublin (Figure 1).

Site investigations and representative soil and gas sample collection were carried out between $9^{th} - 13^{th}$ March 2018 to determine the vertical and horizontal extent of any residual contamination at the site.

This report summarises the data collection and provides an assessment of current soil quality at the site and likely impact of any residual contamination on redevelopment of the site for development.

1.1 Site Description & Outline of Site Investigation

The site is located 10 kilometres outside Dublin City Centre along the N11 Carriageway (Dublin to Wexford road). The site is approximately 3.8km southwest of Dublin Bay and is 1.75 hectares in total. The land is relatively flat in terms of topography with an elevation to ordinance datum (AOD Malin) ranging between 50.9m AOD – 54.6m AOD northwest to southeast. The land holding is highlighted by the red outline in the *figure* below.

Figure 1 Site location map with trial pit locations across the site.

The expected groundwater flow is to the southeast. The nearest watercourse is the Cabinteely Stream approximately 400 metres southeast of the site and flows northwest to southeast. There is no direct linkage between the site and this stream. The aquifer vulnerability is high based on the shallow depth to rock. The land is underlain by granite bedrock which is a Poor Aquifer (Geological Survey of Ireland Classification) and there are no known water supply wells within the area and the area is serviced by pubic mains.

Figure 1 also presents the location of investigation points. Seventeen (17) trial pits and four (4) pilot holes were constructed as part of the 2018 environmental due diligence assessment of the site at Cornelscourt to facilitate soil logging, vapour sampling and soil sample collection. Trial pit logs were constructed based on the site observations by an AWN scientist during the trial pit exercise and are presented in Appendix A.

The site investigation was carried out between $9^{th} - 13^{th}$ March 2018. Trial pit depths range from 2.5m to 3.5m bgl.

1.2 Land Use

Most of the site is greenfield with part of the site (northeast) having been used in recent time as a temporary carpark.

Immediately upgradient of the north west of the site is a Texaco Service Station. This is built-up higher than the site on permeable engineering fill. The Texaco Station has a car wash, underground tanks and a store building on site. A takeaway restaurant and residential housing are located towards the western boundary of the site.

Historic maps from 1837 - 1842 and 1900s (refer to Figure 2 (a) & (b)) were reviewed and show that all available information indicates that prior land use was limited to agricultural uses only at the site. There are no quarries or historical industrial uses which could have resulted in historical sources of contamination. There are no available aerial photographs available on line since1995 but there is no evidence of any previous development other than the temporary car park.

Figure 2 (a) Historic map 1837 – 1842 of Cornelscourt. (b) Historic map 1900's of Cornelscourt.

2.0 SOIL QUALITY ASSESSMENT GUIDELINES

There are no legislated threshold values for soils in Ireland. As such, the soil quality data was compared to a Generic Assessment Criteria (GAC) derived to be protective of human health and also ecology for a residential and commercial/industrial end use.

Representative soil samples were also analysed for Waste Acceptance Criteria (WAC) which indicates suitability of soil for disposable as inert, non-hazardous or hazardous. WAC results have been compared with the landfill acceptance criteria in Council Decision 2003/33/EC which determines suitable for disposal to landfill as inert, non-hazardous or hazardous.

Generic Assessment Criteria in the UK has been derived using the Contaminated Land Exposure Assessment (CLEA) model to be protective of human health for a number of different land uses. LQM (Land Quality Management) and the CIEH (Chartered Institute of Environmental Health) developed a document in July 2009 detailing their own research and derivation of their own 'LQM GACs'. A total of 82 substances including many organic substances had LQM GACs derived, for the standard land uses of residential. commercial/industrial and allotments. This was updated in 2015 following further research and the derived results are now called LQM/CIEH Suitable 4 Use Level (S4UL). The LQM/CIEH S4ULs are intended for use in assessing the potential risks posed to human health by contaminants in soil and as transparently -derived and cautious "trigger values" above which further assessment of the risks or remedial action may be needed. For each contaminant S4ULs have been derived for six land use scenarios based on assessing exposure pathways in each planning scenario. In this instance the commercial scenario has been considered. Soil type and soil organic matter (SOM) has an influence on the behaviour of contaminants. S4ULs have been derived for three SOM contents (1%, 2.5% and 6%) to cover the likely range in soils. A prudent approach has been taken by considering the lower 1% SOM content.

The UK values do not have any legal standing within the Republic of Ireland and no statutory guidance for assessing the significance of soil contamination currently exists. However, the values do provide a means of placing the data within context when considering magnitude of risk and have been used in that capacity for this assessment.

The main basis of the assessment remains the conceptual site model and consideration of the pollutant linkages: Source - Pathway – Receptor.

Refer to Table 1 for sample analysis. Table 2 below shows the soil analysis results compared to the LQM/CIEH Guideline values where available. Full laboratory results (JEL 18/3937) is presented in Appendix B.

The following samples were analysed for the following parameters.

- Waste Acceptance Criteria
- TPH CWG (speciated hydrocarbons)
- Volatiles including BTEX (Benzene, toluene, ethylbenzene, xylene), and
- Heavy Metals

Analysis	Samples
WAC analysis including asbestos	TP18-10 @ 2.30m & TP18-11 @ 3.50m (2 in total)
TPH CWG	TP18-02 @ 2.30m, TP18-04 @ 2.10m, TP18-06 @ 2.20m, TP18-08 @ 2.20m, TP18-09 @ 2.20m, TP18- 10 @ 3.40m, TP18-11 @ 3.30m, TP18- 13 @ 2.20m & TP18-16 @ 2.60m. PH18-01 @ 1.90m & PH18-04 @ 2.00 m. (11 in total)
Heavy Metals	TP18-02 @ 2.30m, TP18-04 @ 2.10m, TP18-06 @ 2.20m & TP18-07 @ 2.10m, TP18-09 @ 2.20m PH18- 01 @ 1.90m (6 in total)

Table 1Samples sent to the laboratory for analysis.

3.0 SITE INVESTIGATION FINDINGS

Seventeen trial pits (TP17-01 to TP17-17) and four pilot holes were excavated to a depth between 2m to 3.5m. Figure 1 presents the location of all trial pits.

3.1 Soil Logging

A total of seventeen trial pits and four pilot holes were excavated across the entire site including the car park area. The locations of these excavations are shown in Figure 1. In general, the subsoil sequence consisted of firm to stiff, brown to grey sandy gravelly CLAY with sub-angular to sub-rounded cobbles and occasional boulders. The boulders consisted of granite. Bedrock is interpreted to be approximately 3.5mgl to 4.0mgl and comprises granite.

The likely pathway is shallow perched groundwater and infiltration to the underlying bedrock aquifer. The bedrock aquifer is classified by the GSI as a 'Poor Aquifer' – bedrock which is generally unproductive expect for Local Zones. The groundwater vulnerability is classified following GSI/EPA guidelines as 'High' which infers that there is <5 metres of low permeability soils. This is consistent with the findings of the site investigations.

Hydrocarbon contamination was found in the following trial pits: TP18-10, TP18-11, TP18-12, TP18-16 and TP18-17, all located in the northwest boundary of the site. There was no other physical contamination encountered in the other trial pits and pilot holes across the site. Contamination was mainly found directly downgradient from the petrol station and along the western boundary. No source of contamination was identified within the site boundary during the site investigations.

Plate 1 Petrol Station and area of contamination). Plate 2 TP18-11 at boundary of petrol station. (Looking North)

3.2 Laboratory Results

A soil sample was taken at every metre and/or change in lithology, and representative samples sent to Exova Jones Laboratory to provide a greater understanding of the soil quality in the site.

Full laboratory results (JEL 18/3937) are presented in Appendix B. Appendix B also contains a compilation of all historical soil analyses (January – February 2000) collected to date as well as the WAC analysis i.e. from the site investigation in March 2018.

Results are compared against the LQM/CIEH S4ULs for residential and commercial use (1% SOM) where available for contaminants of concern. No exceedances of residential or commercial thresholds have been identified for any contaminants of concern, refer to Table 2 below.

AWN Consulting Ltd. Soil Samples during Site Invesitgation 2018					Guidline	Guidline Values												
			Sample ID	TP18-02	TP18-04	TP18-06	TP18-08	TP18-09	TP18-10	TP18-10	TP18-11	TP18-11	TP18-13	TP18-16	PH18-01	PH18-04		
Report:	Solid (Soil samples)		Depth (m)	2.30	2.10	2.20	2.20	2.20	2.30	3.40	3.30	3.50	2.20	2.60	1.90	2.00	LOWCIEH Stul for HHRA	LOM/CIEH S4ul for HHRA
Client:			Containers	V J	V J	V J	JT	JT	VJT	٧J	JΤ	JΤ	JT	JT	J	VJT	Residental Threshold at	Commercial Threshold at
Client ref:	18 10021		Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	1% SOM (mg/kg)	1% SOM (mg/kg)
Location:	Cornelscourt, Co. Dublin		Sampled Date	12/03/2018	12/03/2018	12/03/2018	12/03/2018	12/03/2018	13/03/2018	13/03/2018	13/03/2018	13/03/2018	13/03/2018	13/03/2018	09/03/2018	09/03/2018		
GTC21C35AL	>C21-C35 [#]	mg/kg	<7	-	-	-	-	-	28	57	101	92	-	84	-	-		
GTC05C35AL	Total aliphatics C5-35	mg/kg	<19	-	-	-	-	-	229	504	719	730	-	555	-	-	-	-
TM36/PM12	>C6-C10	mg/kg	<0.1	NT	NT	NT	NT	NT	8.4	NT	NT	33.4	NT	NT	NT	NT	-	-
TM5/PM8/PM16	>C10-C25	mg/kg	<10	NT	NT	NT	NT	NT	207	NT	NT	698	NT	NT	NT	NT	-	-
TM5/PM8/PM16	>C25-C35	mg/kg	<10	NT	NT	NT	NT	NT	-	NT	NT	13	NT	NT	NT	NT	-	-
07500550074.0	Aromatics	<i>A</i>	~ 4															
GTEC05EC07AR	>C5-EC7"	mg/kg	<0.1	-	-	-			-	-	-	-	-	-	-	-	1400	26000(1220)sol
GTEC07EC08AR	>EC7-EC8"	mg/kg	<0.1	-	-	-		-	-	-	-	-	-	-	-	-	3900	56000(869)vap
GTEC08EC10AR	>EC8-EC10"	mg/kg	<0.1	-	-	-	<u> </u>		0.6	0.2	-	4.6	-	-	-	-	270	3500(613)vap
GTEC10EC12AR	>EC10-EC12*	mg/кg	<0.2	-	-	-			24.2	53.2	23.2	85.3	-	23.2	-	-	1200	16000(364)sol
GTEC12EC16AR	>EC12-EC16"	mg/кg	<4	-	-	-			43	95	150	181	-	134	-	-	2500	36000(169)sol
GTEC16EC21AR	>EC16-EC21	mg/кg	</td <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>59</td> <td>121</td> <td>206</td> <td>190</td> <td>-</td> <td>1/6</td> <td>-</td> <td>-</td> <td>1900</td> <td>28000</td>	-	-	-		-	59	121	206	190	-	1/6	-	-	1900	28000
GTEC2TEC35AR	>EU21-EU35 ⁻	mg/kg	</td <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>23</td> <td>42</td> <td>00</td> <td>57</td> <td>-</td> <td>54</td> <td>-</td> <td>-</td> <td>1900</td> <td>28000</td>	-	-	-		-	23	42	00	57	-	54	-	-	1900	28000
GTECUSEC35AR	Total aromatics CS-35"	mg/kg	<19	-	-	-		-	150	311	445	518	-	387	-	-	-	-
GIC05C35ALAR	Total aliphatics and aromatics(C3-35)	тg/кg	<38	-	-	-	· ·	-	379	815	1164	1248	-	942	-	-	•	-
4004.04.4	MEDE#		-															
71 42 2	NIIDE	ug/kg	<0	-	-	-	<u> </u>		-	-	-	-	-	-	-	-	-	-
108 88 2	Benzene	ug/kg	<5	-	-	-			0.009	0.107	-	-	-	-	-	-	380	27000
100-00-3	Toluene	ug/kg	<5	-	-	-		-	0.02	0.035	-	- 1.072	-	-		-	3900000	56000000(869)vap
100-41-4	Enyibenzene	ug/kg	<2	-	-	-		-	0.035	0.041	-	1.073	-	-		-	440000	5700000(518)vap m: 6200000(625)vap
P_M_XYLENE	m/p-Xylene [#]	ug/kg	<5	-	-	-	-	-	0.425	0.115	0.097	3.483	-	0.038	-	-	450000	p: 5900000(576)sol
95-47-6	o-Xylene #	ug/kg	<5	-	-	-	-	-	0.062	0.091	-	-	-	-	-	-	48000	6600000(478)sol
																	-	-
-	Total Mineral Oil	mg/kg	<1	-	-	-	-	-	220	-	-	695	-	-	-	-	-	-
Leaend <u>16.4</u> <u>16.4</u> <u>Notes</u> HHRA 2015 - LU	edend 16.4 Results exceed LQM/CIEH S4ul for HHRA Residental Threshold at 1% SOM (mg/kg) Results exceed LQM/CIEH S4ul for HHRA Commercial & Residential Threshold at 1% SOM (mg/kg) Result is below the laboratory respective limit of detection (LOD) 16.4 Results exceed LQM/CIEH S4ul for HHRA Commercial & Residential Threshold at 1% SOM (mg/kg) NT - Guideline threshold value not available NT Votes Votes NHRA 2015 - LQM/CIEH Suitable 4 Use Levels based on 'Commercial' and/or 'resedential' land use using 1% SOM																	

Vap: vap S4UL presented exceed the vapour stauration limit, which is presented in brackets

Table 2Soil analysis results for TPH CWG analysis.

The majority of the soil samples analysed for TPH CWG recorded concentrations below the laboratory's respective limit of detection (LOD). This indicates that there is only contamination present directly downgradient from the petrol station. Refer to Table 2, above.

3.2.1 Waste Acceptance Criteria (WAC) Analysis

To investigate the suitability of soil for disposal if required, two soil samples (TP18-10 @ 2.30m & TP18-11 @ 3.50m) were collected from the area identified as having physical evidence of residual contamination. These results have been compared against Waste Acceptance Criteria (WAC) set out by the adopted EU Council Decision 2003/33/EC which established criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 and Annex II of Directive 1999/31/EC (2002).

The WAC analysis is not indicative of the potential future use of the land for development but rather for identification of suitability for licenced disposal. As such this criterion is only relevant to disposal of the soil off site.

The results identified that the soil closer to the boundary with petrol station (TP18-11(3.50m) falls under Category D – Hazardous due to the concentration of mineral oil, e.g. <500mg/kg present in the sample. The sample (TP18-10 @ 2.30m) collected further from the presumed source of the petrol station is suitable for classification as Category A – Inert.

The above assessment is carried out on the basis of only two soil samples obtained from two different trial pit locations that contained residual contamination. Should soil removal be considered as an option, additional soil sampling may be required to further refine the above soil classification. Waste acceptance criteria may vary at each potential waste receiving facility and further assessment and consultation with the proposed waste receiving facility is required. The acceptance of any waste material at a receiving facility will be subject to the approval of the facility operator in accordance with their facility permit or licence.

3.3 Ground Gas Assessment

Gas analysis was carried out using a gas analyser unit – GA5000. The GA5000 is used to measure critical gases such as % CH₄, CO₂ and O₂, H2S (up to 10000ppm), NH₃, H₂ and CO (H₂ compensated). This unit was used to measure any elevated gasses within the soil during site investigations.

Elevated gas concentrations were noted in the following trail pits; TP18-10, TP18-11, TP18-12, TP18-16 and TP18-17 where a hydrocarbon odor was noted. Elevated CH₄ concentrations were noted across these trial pits ranging from 0.1% (TP18-11) to 5.6% (TP18-16). There were no other exceedances with gas within the other trial pits and pilot holes across the site. These concentrations are classed as *'very low risk'*, according to the guidelines for 'Assessing Risks Posed by Hazardous Ground Gases to Buildings', CIRIA C665, 2007.

3.4 Summary of Soil Conditions

Most of the soil beneath the site was found to be uncontaminated based on physical observations, gas and laboratory results. This is based on field observations and laboratory analysis for twelve (12) trial pits in the greenfield area and four (4) pilot holes within the car park.

A localised area of shallow hydrocarbon contamination within soil was identified directly downgradient from the petrol station. The extent of contamination present based on physical observation and laboratory analysis is approximately 950 m² (delineated by the hatched area on Figure 3). Physical evidence of hydrocarbon contamination within soil was noted in trial pits TP18-10, TP18-11, TP18-12, TP18-16 and TP18-17 in the northwest boundary of the site. The hydrocarbon contaminated soil was found to be present within natural CLAY and gravelly CLAY just above expected rock head. The depth of contamination ranges from 2mbgl to 3.5mbgl. There was no evidence of free phase hydrocarbon product identified during the site assessment, which would be indicative of a recent contamination event.

Comparison of the laboratory findings with UK LQM data demonstrates the residual contaminated soil within the site are below the LQM threshold values for residential and commercial use.

Figure 3 Extent of soil contamination within the site.

4.0 QUANTITATIVE RISK ASSESSMENT

4.1 Description of Model

AWN have used the RISC Model to undertake a detailed quantitative risk assessment. RISC enables the site-specific assessment of likely risk to site end

users and enables the determination of whether or not it is acceptable for soil concentrations to remain in the ground.

RISC is a software package for performing fate and transport modelling, human health risk assessments and ecological risk assessments for contaminated sites. RISC can be used to estimate the potential for adverse human health impacts (both carcinogenic and non-carcinogenic) from up to nine exposure pathways.

RISC Key Features Include:

•A customisable chemical database with 82 chemicals

•The ability to calculate additive risk due to multiple pathways, compounds and receptors (such as a resident exposed as both a child and an adult)

RISC Exposure Pathways Include:

- Ingestion of soil
- •Dermal contact with soil
- Ingestion of groundwater
- •Dermal contact with groundwater
- •Inhalation in the shower
- •Inhalation of outdoor air
- •Inhalation of indoor air
- •Ingestion of surface water
- •Dermal contact with surface water

RISC Fate and Transport Models Include:

- •Johnson and Ettinger indoor air model
- •Vadose zone model
- •Saturated zone model
- •Volatilization from groundwater to indoor and outdoor air
- •Outdoor box model

4.2 Model Input Data

The most elevated levels of hydrocarbons were chosen as the input parameters to the model, this data was taken from the soil quality data collected during the site investigation (Ref Table 2).

The model input data was predominantly chosen from TP 18. It was assumed that there would be a ground floor flat within any proposed development, and that as a worst case the contamination was only 0.1m below the floor slab, which also from a worst-case point of view was assumed to be a 15cm thick concrete slab.

The details of the model input parameters are provided in Appendix C.

Once all data was uploaded, the model was run, and the model output is discussed in below.

4.3 Model Results

The model out data is provided as Appendix D.

The key parameter of concern is whether the predicted carcinogenic or noncarcinogenic health effects are such that the risk to a theoretical occupant of a future apartment development on-site would be exposed to either a cancer risk of 1 in 1,000,000 per annum or a non-carcinogenic health effect of 1 in 1,000,000 per annum.

The 1 in 1000,000 threshold is the *de minimis* risk which is considered acceptable.

The carcinogenic risk is shown in Table 4.1 below and the non-carcinogenic risk is shown in Table 4.2 below. It can be seen in both cases that the predicted risk is less than 1 in 1,000,000 per annum (also known as 1E-6 per annum).

Chemical	Inhalation of Indoor Air	Inhalation of Outdoor Air	TOTAL
Ethylbenzene	2.0E-11	1.5E-16	2.0E-11
TPH Aliphatic C5-6	ND	ND	ND
TPH Aliphatic C6-8	ND	ND	ND
TPH Aliphatic C8-10	ND	ND	ND
TPH Aliphatic C10-12	ND	ND	ND
TPH Aliphatic C12-16	ND	ND	ND
TPH Aliphatic C16-35	ND	ND	ND
TPH Aromatic C7-8	ND	ND	ND
TPH Aromatic C8-10	ND	ND	ND
TPH Aromatic C10-12	ND	ND	ND
TPH Aromatic C12-16	ND	ND	ND
TPH Aromatic C16-21	ND	ND	ND
TPH Aromatic C21-35	ND	ND	ND
Xylenes (m-)	ND	ND	ND
TOTAL	2.0E-11	1.5E-16	2.0E-11

Table 4.1 Carcinogenic Risk Sumr	nary
----------------------------------	------

Chemical	Inhalation of Indoor Air	Inhalation of Outdoor Air	TOTAL
Ethylbenzene	6.1E-08	4.7E-13	6.1E-08
TPH Aliphatic C5-6	0.0E+00	0.0E+00	ND
TPH Aliphatic C6-8	0.0E+00	0.0E+00	ND
TPH Aliphatic C8-10	0.0E+00	0.0E+00	ND
TPH Aliphatic C10-12	0.0E+00	0.0E+00	ND
TPH Aliphatic C12-16	0.0E+00	0.0E+00	ND
TPH Aliphatic C16-35	ND	ND	ND
TPH Aromatic C7-8	1.6E-07	1.3E-12	1.6E-07
TPH Aromatic C8-10	0.0E+00	0.0E+00	ND
TPH Aromatic C10-12	0.0E+00	0.0E+00	ND
TPH Aromatic C12-16	0.0E+00	0.0E+00	ND
TPH Aromatic C16-21	ND	ND	ND
TPH Aromatic C21-35	ND	ND	ND
Xylenes (m-)	2.1E-08	1.7E-13	2.1E-08
TOTAL	2.5E-07	1.9E-12	2.5E-07

5.0 CONCLUSIONS

The following conclusions are based on the site investigations carried out in March 2018 and risk assessment:

- Apart from a localised area in the northwest of the site, the site was found to be uncontaminated based on physical observations, gas and laboratory results. This is based on field observations and laboratory analysis for twelve (12) trial pits in the greenfield area and four (4) pilot holes within the car park (Figure 3).
- Localised shallow hydrocarbon contamination was found immediately downgradient of the petrol station. The extent of contamination present based on physical observation and laboratory analysis is approx. 960 square metres (delineated by the hatched area on Figure 3). Physical evidence of hydrocarbon contamination within soil was noted in trial pits TP18-10, TP18-11, TP18-12, TP18-16 and TP18-17 (all located in the northwest boundary of the site). TP18-10, TP11 & TP18-16. TP18-12 & TP18-17 also within this area were not analysed but contain contamination based on field observations. The contamination is most evident within a natural CLAY and the underlying gravelly clay horizon c. 2mbgl (metres below ground level) and 3.50mbgl, respectively.
- No source of contamination was identified. However, it is likely that the contamination is derived from a historical leak sourced from an adjacent (upgradient) petrol station. The absence of any free phase product and the significant low concentrations of volatile components of the hydrocarbons (BTEX) noted indicate an historical leak as a source.
- Two representative samples of the contaminated soil were analysed for full Waste Acceptance Criteria (WAC) testing. One sample (TP18-10 @ 2.30mblg) complies with "inert" criteria" while the second sample (TP18-11 @ 3.50mgl) is "Hazardous" due to the mineral oil content present. This criterion is only relevant to disposal of the soil off site.
- Table 1 presents the soil quality data for relevant parameters compared with LQM/CIEH thresholds concentrations for the residential and commercial use (GQRA). The results show compliance with a future use for either residential or commercial use.
- Completion of a quantitative risk assessment (DQRA) for an apartment type development on the site concluded that even assuming the worst-case exposure

scenario of an apartment dweller on the contaminated section of the site, there is no significant risk associated with the residual contamination present.

LIMITATIONS OF REPORT

The conclusions presented in this report are professional opinions based solely on the tasks outlined herein and the information made available to AWN. They are intended for the purpose outlined herein and for the indicated site and project. p.

Opinions and recommendations presented herein apply to the site conditions existing at the time of the recently completed field work and subsequent assessment. They cannot apply to changes at the site of which AWN is not aware and has not had the opportunity to evaluate. This report is intended for use in its entirety; no excerpt may be taken to be representative of this baseline assessment. All work carried out in preparing this report has utilised and is based on AWN professional knowledge and understanding of the current relevant Irish and European Community standards, codes and legislation.

Copyright © This report is the copyright of AWN Consulting Limited. Any unauthorised reproduction or usage by any other person other than Dunnes Stores is strictly prohibited.

APPENDIX A

Trial Pit Logs

		T · 1 P/			
awn consulting		Irial Pit	Log:	TP18-01	
J]			Sheet 1/1	
AWN Project Ref: 18-10021 Client: D	unnes Stores		Excavation	date: 12/03	3/2018
Ground Level (mAOD): - Grid Reference: 0722447 / 0725857 Location: C	ornelscourt (o Dublin	Geology loc	۱.	CD
				<u>.</u>	00
SUBSURFACE PROFILE	Depth mbgl	Lithology		BACKFILL	
Ground surface		8.81		-	
 0.2 0.3 Soft light brown slightly sandy, gravelly CLAY with cobbles and 0.4 boulders, Sand is fine to coarse. Gravels are sub-angular to sub- rounded. Gravels contain some localised groundwater at 0.5m, with 	0.25				
 0.6 0.7 Stiff to firm dark brown slightly sandy, slightly gravelly CLAY with some cobbles and boulders, Sand is fine to coarse. Gravels are sub-angular to sub-rounded. Damp. 0.9 	0.60				
1.0				NGS	
1.1 1.2 Detail: 1.2m, Groundwater Strike, slow ingress		_		ARIS	
1.3 1.4				NITH	
1.5				TED	
1.7				CKFIL	
1.9				BA	
2.0 2.1		_			
2.2 2.3 Detail: 2.2m, Groundwater Strike, slow ingress					
2.4					
2.5					
2.7 2.8					
2.9					
3.1 Light brown to yellow slightly sandy GRAVELS. Sand is fine to 3.2 coarse. Gravels are sub-angular to sub-rounded. Damp.	3.05	8			
3.4 End of Trial Pit 3.40 m					
3.5 3.6					
3.7 3.8					
3.9					
4.0					
4.2 4.3					
4.4 4.5					
4.6					
4.7					
4.9 5.0					
5.1					
5.2					
5.4 5.5					
5.6 5.7					
5.8					
6.0					
Excavation Method: 13 ton tracked machine	Pit dimensio	ns: 0.6m x 2.00 m	x 3.5 m (dei	oth)	
Comments: Trial pit located close to the N11	G/level (mA	DD): -	- (,	
	Water Strike	s (mbal):	0.50	1 20	2 20
Contractor: Breffni Contractors	Static Water	Level (mbgl):	0.00	-	

			-	
awnconsulting		Trial Pit	Log:	TP18-02
5]			Sheet 1/1
AWN Project Ref: 18-10021 Client: D	unnes Stores		Excavation	date: 12/03/2018
Ground Level (mAOD): -	ornelscourt (o Dublin	Geology Io	
			Ceology Io	<u>'g.</u>
SUBSURFACE PROFILE	Depth mbgl	Lithology		BACKFILL
Ground surface				
0.2 0.3 Soft light brown slightly sandy, gravelly CLAY with cobbles and 0.4 boulders, Sand is fine to coarse. Gravels are sub-angular to sub- rounded. Gravels contain some localised groundwater at 0.55m,	- 0.25	·		
with slow ingress. 6 5 5 5 5 5 5 5 5 5 5 5 5 5	- 0.60			
0.9 1.0 1.1 Detail: 1.05m, Groundwater Strike, slow ingress		_		
1.2 1.3 1.4				KISINGS
1.5 1.6 1.7				WITH AF
1.8 1.9				KFILLED
2.0				BAC
2.2 2.3				
2.4 2.5				
2.6 2.7				
2.8				
3.0 2.1 Light brown to yellow slightly sandy GRAVELS. Sand is fine to	- 3.00	**		
3.1 coarse. Gravels are sub-angular to sub-rounded. Damp. 3.2		202		
3.3 3.4 End of Trial Pit 3.40 m				
3.5 3.6				
3.7				
3.9				
4.0 4.1				
4.2 4.3				
4.4				
4.5				
4.7 4.8				
4.9 5.0				
5.1				
5.2 5.3				
5.4 5.5				
5.6				
5.7 5.8				
5.9 6.0				
Excavation Method: 13 ton tracked machine Comments: Trial pit located close to the N11	G/level (mA	ns: 0.6m x 2.00 m OD): -	1 x 3.5 m (de	əptn)
	Water Strike	es (mbgl):	0.55	1.05 -
Contractor: Breffni Contractors	Static Water	Level (mbgl):		-

10						
awnconsulti	na		Trial Pit	Log:	TP18-03	
	ng				Sheet 1/1	
AWN Project Ref: 18-100	21 Client D	unnes Stores		Excavation	date: 12/0	3/2018
Ground Level (mAOD):	-			Exouvation	12/0	0/2010
Grid Reference: 0722426 / 0725816	Location: C	ornelscourt, C	Co. Dublin	Geology log	g:	CD
SUBSURFACE PRC	FILE	Depth mbgl	Lithology		BACKFILL	
	Ground surface					
0.2 0.3 Soft light brown slightly sandy, gravelly CLAY	with cobbles and	0.25				
0.4 boulders, Sand is fine to coarse. Gravels are s 0.5 rounded. Gravels contain some localised grou	sub-angular to sub- ndwater at 0.50m,		_			
0.6 Stiff to firm dark brown slightly sandy, slightly	gravelly CLAY with	0.60				
0.7 some cobbles and boulders, Sand is fine to co0.8 sub-angular to sub-rounded. Damp.	arse. Gravels are					
0.9 1.0						
1.1					ŝ	
1.3					SING	
1.4 1.5					I ARIS	
1.6					HTIN	
1.8					TED	
1.9 2.0					CKFII	
2.1					BA(
2.3						
2.4 2.5			_			
2.6 Detail: 2.5m, Groundwater Strike, slow ingress of an oil slick	s with an appearance					
2.8						
2.9 3.0 Light brown to vollow slightly condy CDAV/ELS	Condia fina ta	3.00	888			
3.1 coarse. Gravels are sub-angular to sub-round	ed. Damp.		88			
3.3	-	-				
3.4 End of Trial Pit 3.38 3.5	5 m					
3.6 3.7						
3.8						
4.0						
4.1 4.2						
4.3						
4.5						
4.o 4.7						
4.8 4.9						
5.0 5.1						
5.2						
5.3 5.4						
5.5						
5.7						
5.8 5.9						
6.0						
Excavation Method: 13 ton tracked r	nachine	Pit dimensio	ns: 0.6m x 2.00 m	x 3.35 m (d	epth)	
Comments:		G/level (mA	OD): -			
		Water Strike	s (mbal):	0.50	2 55	
Contractor: Breffni Contractors		Static Water	Level (mbgl):	0.00	-	-

10						
awnconsultin	0		Trial Pit Log: TP18-04			
	9				Sheet 1/1	
AWN Project Ref: 18-10021	Client: Du	Innes Stores		Excavation	date: 12/0	3/2018
Ground Level (mAOD):						
Grid Reference: 0722385 / 0725845	Location: Co	ornelscourt, C	Co. Dublin	Geology loo	g:	CD
SUBSURFACE PROFI	IF	Depth mbal	Lithology		BACKEILI	
	Ground surface	Bopar mog.	Ennology		BROTATIEE	
0.0 Topsoil						
0.1 0.2		0.25				
0.3 Soft light brown slightly sandy, gravelly CLAY with 0.4 boulders, Sand is fine to coarse. Gravels are sub	h cobbles and -angular to sub-	0.25				
0.5 with slow ingress.	water at 0.55m,	0.60	_			
0.7 Stiff to firm dark brown slightly sandy, slightly graves of the sand state of th	velly CLAY with se. Gravels are	0.60				
0.8 sub-angular to sub-rounded. Damp. 0.9						
1.0						
1.2					GS	
1.3					RISIN	
1.5 1.6					ТНА	
1.7						
1.8						
2.0 2.1					BACK	
2.2					_	
2.3						
2.5 2.6						
2.7		2.85				
2.9 End of Trial Pit 2.85 n	n	2.00				
3.0 3.1						
3.2 3.3						
3.4						
3.6						
3.7 3.8						
3.9						
4.1						
4.2						
4.4 4.5						
4.6						
4.8						
4.9 5.0						
5.1						
5.3						
5.4 5.5						
5.6 5.7						
5.8						
5.9 6.0						
Excavation Method: 12 ton tracked me	chine	Pit dimensio	ns: 0 6m v 2 00 ~	x 2.85 m (d	enth)	
Comments:		G/level (mAC	DD): -	⊼ 2.00 III (0	epuij	
		Mator Striles	c (mbal):	0.55	<u> </u>	
Contractor: Breffni Contractors		Static Water	Level (mbgl):	0.55	-	-

			-	
awn consulting		Trial Pit	Log:	TP18-05
J]			Sheet 1/1
AWN Project Ref: 18-10021 Client: Du	unnes Stores		Excavation	date: 12/03/2018
Ground Level (mAOD): - Grid Reference: 0722404 / 0725768 l ocation: Ci	ornelscourt. (o. Dublin	Geology log	n. CD
			0001099.10	<u>.</u>
SUBSURFACE PROFILE	Depth mbgl	Lithology		BACKFILL
Ground surface				
0.0 Topsoil 0.1				
0.2 MADE GROUND consisting of; yellow bricks, red bricks, plastic bags, plastic broke pipe fragments and parts of a old steel fencing.	0.20			
 0.5 Soft light brown slightly sandy, gravelly CLAY with cobbles and 0.6 boulders, Sand is fine to coarse. Gravels are sub-angular to sub- 0,7 rounded. Gravels are wet. 	0.45			
0.8 0.9 Stiff to firm dark brown slightly sandy, slightly gravelly CLAY with	0.80			
1.1 sub-angular to sub-rounded. Damp.		_		g
 Detail: 1.3m, Groundwater Strike, slow ingress with an appearance 1.4 of an oil slick. 				ARISIN
1.5 1.6				НТІ/
1.7 1.8				
1.9				KFILL
2.1				BAC
2.2 2.3				
2.4				
2.5 2.6				
2.7 2.8				
2.9	3.00			
3.0 3.1 Light brown to yellow slightly sandy GRAVELS. Sand is fine to	3.00			
3.2				
3.4 End of Trial Pit 3.1 m				
3.5 3.6				
3.7				
3.8 3.9				
4.0				
4.1				
4.3 4.4				
4.5				
4.6 4.7				
4.8				
4.9 5.0				
5.1				
5.3				
5.4 5.5				
5.6				
5.7 5.8				
5.9				
o.u				
Excavation Method: 13 ton tracked machine	Pit dimensio	ns: 0.6m x 2.00 m	x 3.10 m (d	epth)
Comments: Close to the housed along the south eastern boundary of the site	G/level (mA	OD): -		
	Water Strike	s (mbal):	1.30	<u> </u>
Contractor: Breffni Contractors	Static Water	Level (mbgl):		-

11				-		
awnconsultin	0		Trial Pit Log: TP18-06		TP18-06	
	3				Sheet 1/1	
AWN Project Ref: 18-10021	Client: Du	innes Stores		Excavation	date: 12/03	3/2018
Grid Reference: 0722401 / 0725753	Location: Co	ornelscourt, C	Co. Dublin	Geology lo	g:	CD
					-	
SUBSURFACE PROFI	LE	Depth mbgl	Lithology		BACKFILL	
	Ground surface					
0.1		0.20				
0.2 MADE GROUND consisting of; yellow bricks, red bags, plastic broke pipe fragments and parts of a 0.4	l bricks, plastic old steel fencing.	0.20				
0.5 Soft light brown slightly sandy, gravelly CLAY with 0.6 boulders, Sand is fine to coarse. Gravels are sub-0.7 rounded.	n cobbles and angular to sub-	0.45				
0.8 0.9 Stiff to firm dark brown slightly sandy, slightly grav some cobbles and boulders, Sand is fine to coars	velly CLAY with e. Gravels are sub-	0.80				
1.0 angular to sub-rounded. Damp. 1.1 1.2					Ŋ	
1.3 1.4					RISING	
1.5 1.6					1TH AF	
1.7 1.8					TEDW	
1.9 2.0					CKFIL	
2.1 2.2					B/	
2.3 2.4						
2.5 2.6						
2.7 2.8						
2.9 3.0 2.1 Light brown to yellow slightly sandy GRAVELS.	Sand is fine to	3.00	**			
3.1 3.2 3.3	d. Damp.					
3.4 3.5 End of Trial Pit 3 50 m	n	3.50	3555			
3.6 3.7						
3.8 3.9						
4.0 4.1						
4.2 4.3						
4.4 4.5						
4.6 4.7						
4.8 4.9						
5.0 5.1						
5.2 5.3						
5.5 5.6						
5.7						
5.9						
	ala ta a					
Excavation Method: 13 ton tracked ma Comments: Close to the housed along	cnine the south	Pit dimensio G/level (mA0	ns: 0.6m x 2.00 m DD): -	i x 3.50 m (c	iepth)	
eastern boundary of the site			- (T	1	
Contractor: Breffni Contractors		vvater Strike Static Water	s (mogi): Level (mbgl):	-	-	-

1					
awn consulting		Trial Pit Log: TP18-07			
J]			Sheet 1/1	
AWN Project Ref: 18-10021 Client: D	unnes Stores		Excavation	date: 12/03	3/2018
Ground Level (mAOD): - Grid Reference: 0722353 / 0725806 Location: C	ornelscourt, C	Co. Dublin	Geology log	q:	CD
SUBSURFACE PROFILE	Depth mbgl	Lithology		BACKFILL	
Ground surface					
0.2 0.3 Soft light brown slightly sandy, gravelly CLAY with cobbles and 0.4 boulders, Sand is fine to coarse. Gravels are sub-angular to sub- ounded. Gravels within the CLAY are wet.	0.25				
0.5					
0.7 0.8 Detail: 0.80m, Slow to moderate ingress of groundwater into the pit.		_			
0.9 1.0 Stiff to firm dark brown slightly sandy, slightly gravelly CLAY with	0.95				
1.1 some cobbles and boulders, Sand is fine to coarse. Gravels are sub-angular to sub-rounded. Damp.				SG	
1.3 1.4				SINC	
1.5				TH AF	
1.7					
1.9				<pre></pre>	
2.0 2.1				BACH	
2.2 2.3					
2.4 2.5					
2.6 Detail: 2.65m, Sidewall and backwall collapse due to ingres of water					
2.8					
2.9 3.0					
3.1 3.2	3.20				
3.3 End of Trial Pit 3.20 m 3.4					
3.5					
3.7					
3.9					
4.0 4.1					
4.2 4.3					
4.4 4.5					
4.6					
4.8					
7. <i>8</i> 5.0					
5.1 5.2					
5.3 5.4					
5.5 5.6					
5.7					
5.9					
6.U					
Excavation Method: 13 ton tracked machine Comments:	Pit dimensio G/level (mA	ons: 0.6m x 2.00 m OD): -	1 x 2.85 m (d	epth)	
	Water Strike	es (mbgl):	0.80	-	-
Contractor: Breffni Contractors	Static Water	Level (mbgl):		-	

11						
awnconsultir	10		Trial Pit	Log:	TP18-08	
	٠ ک]			Sheet 1/1	
AWN Project Ref: 18-10021	Client: Du	unnes Stores		Excavation	date: 12/0	3/2018
Grid Reference: 0722363 / 0725825	Location: Co	ornelscourt, C	Co. Dublin	Geology log	g:	CD
SUBSURFACE PROFI	ILE	Depth mbgl	Lithology		BACKFILL	
	Ground surface					
0.0 0.1						
0.2 0.3 Soft light brown slightly sandy, gravelly CLAY wit 0.4 boulders, Sand is fine to coarse. Gravels are sub	h cobbles and -angular to sub-	0.25				
0.5 rounded. Gravels contain some localised ground with slow ingress. 0.6 Stiff to firm dark brown slightly sandy, slightly gra	velly CLAY with	0.60				
0.7 some cobbles and boulders, Sand is fine to coars 0.8 sub-angular to sub-rounded. Damp. 0.9	se. Gravels are					
1.0 1.1 1.2			_		ß	
1.3 Detail: 1.25m, Groundwater Strike, slow ingress 1.4					NISIN	
1.5					TH AI	
1.7					D WI	
1.8					LILLE	
2.0 2.1					BACK	
2.2						
2.3 2.4						
2.5 2.6						
2.7						
2.8						
3.0 3.1 Light brown to yellow slightly sandy GRAVELS. S	Sand is fine to	3.00				
3.2	Damp.					
3.3		3.40	888			
3.5 3.6 End of Trial Bit 2.40 a	n					
3.7 End of Thai Fit 3.40 h	11					
3.8 3.9						
4.0						
4.1						
4.3 4 4						
4.5						
4.6 4.7						
4.8						
5.0						
5.1 5.2						
5.3						
5.5						
5.6 5.7						
5.8						
5.9 6.0						
	ahina	Ditation		<u> </u>	anth)	
Excavation Method: 13 ton tracked ma Comments:	ICHINE	G/level (mA	ns: 0.6m x 2.00 m OD): -	x 3.40 m (d	eptn)	
			/			
		Water Strike	es (mbgl):	0.40	1.25	-
Contractor: Breffni Contractors		Static Water	Level (mbgl):		-	

11		TUIDY		
awn consulting		Irial Pit	∟og:	Sheet 1/1
				Sheet 1/1
AWN Project Ref: 18-10021 Client: D	unnes Stores		Excavation	date: 12/03/2018
Grid Reference: 0722363 / 0725825 Location: C	ornelscourt, C	Co. Dublin	Geology log	g: CD
	1		1	
SUBSURFACE PROFILE	Depth mbgl	Lithology		BACKFILL
Ground surface				
0.3 Soft light brown slightly sandy, gravelly CLAY with cobbles and	0.25			
0.5 rounded.				
0.6 0.7				
0.8 0.9				
1.0 1.1	1.10			
 1.2 Stiff to firm dark brown slightly sandy, slightly gravelly CLAY with 1.3 some cobbles and boulders, Sand is fine to coarse. Gravels are sub-angular to sub-rounded. Damp. 				KISINGS
1.5 Detail: 1.45m, Groundwater Strike, slow ingress		_		ТН АF
1.7				EDWI
1.9				KFILLI
2.0				BACI
2.2 2.3				
2.4 2.5				
2.6 2.7				
2.8				
3.0				
3.1- 3.2 Light brown to yellow slightly sandy GRAVELS. Sand is fine to	3.12			
3.3 500100. Crutolo dio cas angular to sub roundod. Bamp. 3.4	3.40	***		
3.5 3.6 End of Trial Pit 3.40 m				
3.7 3.8				
3.9 4.0				
4.1				
4.3				
4.4 4.5				
4.6 4.7				
4.8 4.9				
5.0 5.1				
5.2				
5.4				
5.6				
5.7 5.8				
5.9 6.0				
Excavation Method: 13 ton tracked machine	Pit dimensio	ns: 0.6m x 2 00 m	x 3.40 m (d	epth)
Comments:	G/level (mA	OD): -		
	Water Strike	es (mbal):	1 45	
Contractor: Breffni Contractors	Static Water	Level (mbgl):	0	-

awnconsulting		Trial Pit Log: TP18-10		TP18-10	
awireonsurring				Sheet 1/1	
AWN Project Ref: 18-10021 Client: D	unnes Stores		Excavation	date: 13/03/20	118
Ground Level (mAOD): -			Licavation	uale. 15/05/20	510
Grid Reference: 0722335 / 0725825 Location: C	ornelscourt, C	Co. Dublin	Geology lo	g:	CD
SUBSURFACE PROFILE	Depth mbgl	Lithology		BACKFILL	
Ground surface	9				
0.0 Topsoil 0.1					
 0.2 0.3 Soft light brown slightly sandy, gravelly CLAY with cobbles and boulders, Sand is fine to coarse. Gravels are sub-angular to sub- rounded 	- 0.25	81,931			
0.5 0.6 0.7 Detail: 0.70m, Groundwater Strike, slow ingress		_			
0.8 s 5 Stiff to firm dark brown slightly sandy, slightly gravelly CLAY with	- 0.80				
 1.0 sub-angular to sub-rounded. Damp. 1.1 					
1.2 1 3 Detail: 1.25m, Groundwater Strike, slow ingress		_		NGS	
1.4				ARISI	
1.5 1.6				HTI /	
1.7 1.8 Detail 4 com. Charac hudsenshar a dam anitting form the site				ED A	
1.9 CLAY is stained grey to dark grey.				KFILL	
2.0				BAC	
2.2 2.3					
2.4					
2.5 2.6					
2.7					
2.9					
3.0 3.1 Light brown to vellow slightly sandy GRAVELS. Sand is fine to	3.05				
3.2 coarse. Gravels are sub-angular to sub-rounded. Damp, with a strong hydrocarbon odour.					
3.4					
3.5 3.6 End of Trial Pit 3.55 m	3.55	Decks.			
3.7					
3.9					
4.0 4.1					
4.2					
4.3 4.4					
4.5					
4.7					
4.8 4.9					
5.0					
5.1 5.2					
5.3 5.4					
5.5					
5.6 5.7					
5.8					
5.9 6.0					
Exceptation Method: 13 ton tracked machine	Pit dimonsio	ns: 0 6m v 2 00 ~	x 3 55 m (d	lenth)	
Comments: First encounter of hydrocarbon	G/level (mA	ns. 0.011 x 2.00 m OD): -	0) III CC.C X I	ieh(II)	
contamination at a depth of 1.8m to 2m. Trial Pit		,			
Constructed so metres south of the petrol station.	Water Strike	es (mbgl):	0.70	1.25	-
Contractor: Brettni Contractors	Static Water	' Level (mbgl):	1	-	

1				
awn consulting		Trial Pit Log: TP1		TP18-11
J				Sheet 1/1
AWN Project Ref: 18-10021 Client: D	unnes Stores		Excavation	n date: 13/03/2018
Ground Level (mAOD): Grid Reference: 0722327 / 0725832 Location: 0	ornelscourt (o Dublin	Geology Io	ng: CD
	omolocount, e		Coology lo	g. 02
SUBSURFACE PROFILE	Depth mbgl	Lithology		BACKFILL
Ground surfac	e			1 1
0.0 Topsoil 0.1				
0.2 0.3 MADE GROUND consisting of; yellow bricks, red bricks, plastic	- 0.25			
0.4 bags, plastic broke pipe tragments, rubbish - litter and parts of a old 0.5 steel fencing.	- 0.50			
0.6 Soft light brown slightly sandy, gravelly CLAY with cobbles and 0.7				
0.8	- 0.90			
 Stiff to firm dark brown slightly sandy, slightly gravelly CLAY with some cobbles and boulders, Sand is fine to coarse. Gravels are 	0.00			
1.1 1.2 sub-angular to sub-rounded. Damp.				es
1.3 1.4				RISIN
1.5				TH AF
1.7				
1.8				(FILLE
2.0 Detail: 2m, Strong hydrocarbon odour emitting from the pit. CLAY is 2.1 stained grey to dark grey.				BACK
2.2				
2.4				
2.5 2.6				
2.7 2.8				
2.9				
3.1 Light brown to yellow slightly sandy GRAVELS. Sand is fine to	3.05			
3.2 3.3	3.25	<u>949</u>		
3.4 3.5				
3.6 End of Trial Pit 3.25 m				
3.8				
3.9 4.0				
4.1 4.2				
4.3 4.4				
4.5				
4.7				
4.8 4.9				
5.0 5.1				
5.2				
5.4				
5.5 5.6				
5.7				
5.9				
6.0				
Excavation Method: 13 ton tracked machine	Pit dimensio	ns: 0.6m x 2.00 m	x 3.25 m (d	depth)
contamination at a depth of 1.8m to 2m. Trial Pit	G/level (mA	טט): -		
constructed directly south of the petrol station.	Water Strike	es (mbgl):	-	
Contractor: Breffni Contractors	Static Water	Level (mbgl):		-

1					
awnconsulting		Trial Pit Log: TP18-12		TP18-12	
annoonoarting				Sheet 1/1	
AWN Project Ref: 18-10021 Client:	Dunnes Stores		Excavatio	n date: 13/03/20	18
Ground Level (mAOD): -					
Grid Reference: 0722337 / 0725844 Location:	Cornelscourt, (Co. Dublin	Geology lo	og: C	CD
SUBSURFACE PROFILE	Depth mbgl	Lithology		BACKFILL	
Ground st	urface	0.			
0.0 1 Topsoil					
0.2					
0.3 MADE GROUND consisting of; yellow bricks, red bricks, plastic 0.4 bags, plastic broke pipe fragments, rubbish - litter and parts of a	old				
0.5 Soft light brown slightly sandy, gravelly CLAY with cobbles and	0.50				
0.7					
0.8 0.9	0.90				
1.0 Stiff to firm dark brown slightly sandy, slightly gravelly CLAY with some cobbles and boulders, Sand is fine to coarse. Gravels are	1				
1.1 sub-angular to sub-rounded. Damp. 1.2				ß	
1.3 1.4				RISIN	
1.5				TH AF	
1.7				DWI	
1.8 1.9					
2.0 Detail: 2m, Strong hydrocarbon odour emitting from the pit. CLA	Y is			ACK	
2.2				ш	
2.3 2.4					
2.5					
2.7					
2.8 2.9					
3.0	31				
 Light brown to yellow slightly sandy GRAVELS. Sand is fine to coarse. Gravels are sub-angular to sub-rounded. Damp, with a 	a				
3.3 3.4	3.40	88			
3.5 3.6 End of Trial Bit 3.25 m					
3.7					
3.8					
4.0 4.1					
4.2					
4.5					
4.5 4.6					
4.7					
4.9					
5.0 5.1					
5.2					
5.4					
5.5 5.6					
5.7					
5.9					
6.0					
Excavation Method: 13 ton tracked machine	Pit dimensio	ons: 0.6m x 2.00 m	n x 3.40 m (depth)	
Comments: First encounter of hydrocarbon contamination at a depth of 1.8m to 2m. Trial Pit	G/level (mA	OD): -			
constructed directly south of the petrol station.	Water Strike	es (mbgl):	-	-	-
Contractor: Breffni Contractors	Static Wate	Level (mbgl):		-	

1	-						
av	vn consultir	1 Q		Irial Pit Log: IP18-13			
		5	1			Sheet 1/1	
AWN Project Ref:	18-10021	Client: Du	unnes Stores		Excavation	date: 13/0	03/2018
Grid Reference:	0722340 / 0725855	Location: Co	ornelscourt, C	co. Dublin	Geology log	g:	CD
		•			T		
	SUBSURFACE PROF	LE	Depth mbgl	Lithology		BACKFILL	
0.0		Ground surface		0.0			
0.0 0.1			0.00				
0.2 0.3 bags, plastic bro	D consisting of; yellow bricks, red oke pipe fragments and parts of a	d bricks, plastic a old steel fencing.	0.20				
0.5 Soft light brown0.6 boulders, Sand0.7 rounded. Grave	slightly sandy, gravelly CLAY wi is fine to coarse. Gravels are sub Is are wet.	th cobbles and p-angular to sub-	0.45				
0.8 0.9 Stiff to firm dark some cobbles at	brown slightly sandy, slightly gra nd boulders, Sand is fine to coars	velly CLAY with se. Gravels are	0.80	_			
1.1 1.2 Detail: 1.1m, Gr	oundwater Strike, slow to modera	ate ingress				NGS	
1.4 1.5						TH ARISI	
1.7 1.8							
1.9 2.0						ACKFII	
2.1 2.2						B∕	
2.3 2.4							
2.5							
2.0							
2.8 2.9							
3.0 3.1 Light brown to	yellow slightly sandy GRAVELS	Sand is fine to	3.00				
3.2 coarse. Gravel	Is are sub-angular to sub-rounde	d. Damp.					
3.3 3.4	End of Trial Pit 3.1 m	1					
3.5 3.6							
3.7 3.8							
3.9							
4.0 4.1							
4.2 4 3							
4.4							
4.5 4.6							
4.7 4.8							
4.9							
5.0 5.1							
5.2 5.3							
5.4							
5.5 5.6							
5.7 5.8							
5.9							
6.0							
Excavation N	lethod: 13 ton tracked ma	chine	Pit dimensio	ns: 0.6m x 2.00 m	x 3.10 m (d	epth)	
Comments: petrol station	Trial pit constructed direct	ly east of the	G/level (mA	OD): -			
			Water Strike	s (mbgl):	1.10	-	-
Contractor: B	reffni Contractors		Static Water	Level (mbgl):		-	

11						
awnconsultin	Q		Trial Pit	Log:	TP18-14	
	J				Sheet 1/1	
AWN Project Ref: 18-10021 Ground Level (mAOD): -	Client: Du	innes Stores		Excavation	date: 13/03	3/2018
Grid Reference: 0722426 / 0725816	Location: Co	ornelscourt, C	co. Dublin	Geology log	j :	CD
SUBSURFACE PROFIL	.E	Depth mbgl	Lithology		BACKFILL	
0.0	Ground surface					
 0.3 Soft light brown slightly sandy, gravelly CLAY with 0.4 boulders, Sand is fine to coarse. Gravels are sub- rounded. 	cobbles and angular to sub-	0.25				
0.6 0.7 0.7 some cobbles and boulders, Sand is fine to coarse 0.8 sub-angular to sub-rounded. Damp.	elly CLAY with e. Gravels are	0.60				
0.9 1.0						
1.1 1.2 Detail: 1.2m. Groundwater Strike slow ingress			_		ល្អ	
1.3					ONIS	
1.4					H AR	
1.6 1.7					TIW C	
1.8 1.9					וורדפו	
2.0					ACKF	
2.1 2.2					Δ	
2.3 2.4						
2.5						
2.0			_			
2.8 Detail: 2.8m, Groundwater Strike, slow ingress 2.9						
3.0 3.1 Light brown to yellow slightly sandy GRAVELS. Sa	and is fine to	3.00				
3.2 3.2	Damp.					
3.3		3 45				
3.5 End of Trial Pit 3.45 m 3.6		0.10				
3.7						
3.9						
4.0 4.1						
4.2						
4.4						
4.5 4.6						
4.7 4.8						
4.9						
5.0 5.1						
5.2 5.3						
5.4						
5.6						
5.7 5.8						
5.9						
Excavation Method: 13 ton tracked mac	chine	Pit dimensio	ns: 0.6m x 2.00 m ורחר:	x 3.45 m (de	epth)	
		Unever (MAC	ן ט			
		Water Strike	s (mbgl):	1.20	2.80	-
Contractor: Breffni Contractors		Static Water	Level (mbgl):		-	

awnconsulting		Trial Pit	Log:	TP18-15
annoonourting				Sheet 1/1
AWN Project Ref: 18-10021 Client: D	unnes Stores		Excavation	date: 13/03/2018
Ground Level (mAOD): -				
Grid Reference: 0722426 / 0725816 Location: C	ornelscourt, C	Co. Dublin	Geology lo	g: CD
SUBSURFACE PROFILE	Depth mbgl	Lithology		BACKFILL
Ground surface	9			
0.0 Topsoil				
0.1 0.2	- 0.25			
 0.3 Soft light brown slightly sandy, gravelly CLAY with cobbles and 0.4 boulders, Sand is fine to coarse. Gravels are sub-angular to sub- 0.5 rounded. 	0.25			
 0.6 Stiff to firm dark brown slightly sandy, slightly gravelly CLAY with some cobbles and boulders, Sand is fine to coarse. Gravels are 0.8 sub-angular to sub-rounded. Damp. 	- 0.60	_		
0.9 1.0 Detail: 0.8m, Groundwater Strike, slow ingress				
1.1				<i>(</i> 0
1.2				SINGS
1.4 1.5				ARIS
1.6				H H M
1.7				TED
1.9 2.0				XKFIL
2.1				BAC
2.2 2.3				
2.4 2.5				
2.6 Detail: 2.0m, no hydrocarbon odour present.				
2.7 2.8				
2.9	- 3.00			
3.1 Light brown to yellow slightly sandy GRAVELS. Sand is fine to coarse. Gravels are sub-angular to sub-rounded. Damp.				
3.23.3 Detail: 3.3m, no hydrocarbon odour present.				
3.4 35 End of Trial Bit 2.5 m	3.50	333 		
3.6				
3.7 3.8				
3.9				
4.1				
4.2 4.3				
4.4				
4.6				
4.7 4.8				
4.9				
5.1				
5.2 5.3				
5.4				
5.6				
5.7 5.8				
5.9 6.0				
Excavation Method: 13 ton tracked machine	Pit dimensio	ns: 0.6m x 2.00 m ו וי(חר): -	n x 3.50 m (d	epth)
	Griever (MA	JUJ		
	Water Strike	es (mbgl):	0.80	
Contractor: Breffni Contractors	Static Water	· Level (mbgl):		-

awnconsulting		Trial Pit Log:		TP18-16		
J	Sheet 1/1					
AWN Project Ref: 18-10021 Client: Do	unnes Stores		Excavation	date: 13/03/2018		
Ground Level (mAOD): - Grid Reference: 0722335 / 0725816 Location: C	ornelscourt, C	Co. Dublin	Geology log	g: CD		
SUBSURFACE PROFILE	Depth mbgl	Lithology	BACKFILL			
Ground surface						
0.1 0.1						
0.2 0.3 Soft light brown slightly sandy, gravelly CLAY with cobbles and 0.4 boulders, Sand is fine to coarse. Gravels are sub-angular to sub-	0.25					
0.5 0.6 0.7 Detail: 0.70m, Groundwater Strike, slow ingress		_		ISINGS		
 0.8 0.9 Stiff to firm dark brown slightly sandy, slightly gravelly CLAY with some cobbles and boulders, Sand is fine to coarse. Gravels are sub-angular to sub-rounded. Damp. 1.1 1.2 	0.80			П. Н. АК		
1.3 1.4 1.5 1.6 1.7				BACKI		
1.8 1.9 2.0 2.1 2.2 Detail: 2.1m, Strong hydrocarbon odour emitting from the pit. CLAY						
2.3 2.4	2.30					
2.5 End of Trial Pit 2.3 m 2.6 2.7						
2.8 2.9						
3.0 3.1 3.2						
3.3 3.4						
3.5 3.6 2.7						
3.8 3.9						
4.0 4.1						
4.2 4.3 4.4						
4.5 4.6						
4.7 4.8 4.9						
5.0 5.1						
5.2 5.3 5.4						
5.5 5.6						
5.7 5.8						
5.9 6.0						
Excavation Method: 13 ton tracked machine Comments: Contamination confirmed at western	Pit dimensio G/level (mA	it dimensions: 0.6m x 2.00 m x 2.30 m (depth) /level (mAOD): -				
boundary of the site.	Water Strikes (mbal): 0.70					
Contractor: Breffni Contractors	Static Water	Water Level (mbgl):				
1						
--	------------------------------	-----------------------	-------------------	-------------	--------------------------	--------
awnconsultir	1 a		Trial Pit	Log:	TP18-17	
amoonoarch	' Y				Sheet 1/1	
AWN Project Ref: 18-10021	Client: Du	Innes Stores		Excavation	date: 13/0	3/2018
Ground Level (mAOD):						
Grid Reference:	Location: Co	ornelscourt, C	co. Dublin	Geology log	j :	CD
SUBSURFACE PROFI	LE	Depth mbgl	Lithology		BACKFILL	
	Ground surface					
0.0 0.1						
0.0 Topsoil 0.1 0.2 0.3 Soft light brown slightly sandy, gravelly CLAY with boulders, Sand is fine to coarse. Gravels are sub rounded. 0.6 Detail: 0.70m, Groundwater Strike, slow ingress some cobbles and boulders, Sand is fine to coars sub-angular to sub-rounded. Damp. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.0 2.1 Detail: 2.1m, Strong hydrocarbon odour emitting fills is stained grey to dark grey. 2.3 2.4 2.5 End of Trial Pit 2.3 m 2.6 2.7 2.8 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6	rom the pit. CLAY	0.25 0.80 2.30			BACKFILLED WITH ARISINGS	
4.8 4.9 5.0						
5.2						
5.3 5.4						
5.5						
5.6 5.7						
5.8						
6.0						
Excavation Method: 13 ton tracked me	chine	Pit dimensio	ns: 0 6m v 2 00 ~	x 2 3 m (do	oth)	
Comments: Contamination confirmed a corner of the site at the petrol station be	at north-western uilding.	ern G/level (mAOD): -				
	J	Water Strike	s (mbgl):	0.70		
Contractor: Breffni Contractors		Static Water	Level (mbgl):	-	-	

11		T.: I D'/			
awn consulting		Trial Pit	Log:	PH18-01	
5				Sheet 1/1	
AWN Project Ref: 18-10021 Client: Du	innes Stores		Excavation	date: 09/03/2018	8
Ground Level (mAOD): - Grid Reference: 0722355 / 0725877 Location: Co	ornelscourt, C	co. Dublin	Geology log	1: CI	5
SUBSURFACE PROFILE	Depth mbgl	Lithology		BACKFILL	
Ground surface					
0.1					
0.2 0.3 Grey loose gravelly FILL material used for engineering purposes	0.20				
0.4 0.5				AND	
0.6 o z	0.60			VELS,	
 o.7 some cobbles and boulders, Sand is fine to coarse. Gravels are 0.8 sub-angular to sub-rounded. Damp. 				GRA	
0.9 1.0				VITH	
1.1 1.2 Detail: 1.2m, Groundwater Strike, slow ingress		_		TED	
1.3 1.4				CKFIL	
1.5				BA(
1.6 1.7					
1.8 1.9					
2.0	2.00				
End of Trial Pit 2.00 m					
2.3					
2.5 2.6					
2.7 2.8					
2.9					
3.0 3.1					
3.2 3.3					
3.4 3.5					
3.6					
3.7					
3.9 4.0					
4.1 4.2					
4.3					
4.4 4.5					
4.6 4.7					
4.8 4.9					
5.0					
5.2					
5.3 5.4					
5.5 5.6					
5.7					
5.9					
6.0					
Excavation Method: Light Cable Percussive	Pilot hole				
Comments: Pilot Hole	G/level (mA0	OD): -			
	Water Strike	s (mbgl):	1.20		
Contractor: Ronan Doyle Contractor	Static Water	Level (mbgl):		-	

1					
awn consulting		Trial Pit	Log:	PH18-02	
J	1			Sheet 1/1	
AWN Project Ref: 18-10021 Client: Du	unnes Stores		Excavation	date: 09/0	3/2018
Ground Level (mAOD): - Grid Reference: 0722360 / 0725929 Location: C	ornelscourt. C	Co. Dublin	Geoloay loo	a:	CD
				<u>.</u>	-
SUBSURFACE PROFILE	Depth mbgl	Lithology		BACKFILL	
Ground surface					
0.0 Tarmac 0.1					
0.2 0.3 Grey loose gravelly FILL material used for engineering purposes	0.20				
0.4 0.5				DNA	
0.6 Stiff to firm dark brown slightly sandy, slightly gravelly CLAY with	0.60			ELS /	
0.7 some cobbles and boulders, Sand is fine to coarse. Gravels are0.8 sub-angular to sub-rounded. Damp.				GRAV	
0.9 1.0				VITH	
1.1 1.2 Detail: 1.1m, Groundwater Strike, slow ingress				LEDV	
1.3				KFIL	
1.5				BAC	
1.6 1.7					
1.8 1.9					
2.0					
2.2					
2.3					
2.5 2.6					
2.7					
2.9	0.00				
3.0 3.1 End of Trial Pit 3.00 m	3.00				
3.2 3.3					
3.4 3.5					
3.6					
3.8					
3.9 4.0					
4.1 4.2					
4.3 4.4					
4.5					
4.0					
4.8 4.9					
5.0 5.1					
5.2					
5.4					
5.5 5.6					
5.7 5.8					
5.9					
Excavation Method: Light Cable Percussive	Pilot hole	חר)			
Contractors Danag Davida Contraction	Water Strike	s (mbgl):	1.20		
Contractor: Konan Doyle Contractor	Static water	∟evei (mpgi):	1	-	

		Tuist Dif				
awn consulting		Trial Pit	Log:	PH18-03		
5				Sheet 1/1		
AWN Project Ref: 18-10021 Client: Du	innes Stores		Excavation	date: 09/03/201	8	
Ground Level (mAOD): - Grid Reference: 0722388 / 0725912 Location: Co	ornelscourt, C	co. Dublin	Geology log	ı: C	D	
SUBSURFACE PROFILE	Depth mbgl	Lithology		BACKFILL		
Ground surface						
0.1						
0.2 0.3 Grey loose gravelly FILL material used for engineering purposes	0.20					
0.4 0.5				AND		
0.6 Stiff to firm dark brown slightly sandy, slightly gravelly CLAY with	0.60			/ELS.		
0.8 sub-angular to sub-rounded. Damp.				GRAV		
0.9 1.0		_		WITH		
1.1 Detail: 1.1m, Groundwater Strike, slow ingress 1.2				TEDV		
1.3				OKFIL		
1.5				BA(
1.6 1.7						
1.8 1.9						
2.0 2.1	2.00					
End of Trial Pit 2.00 m						
2.3						
2.5 2.6						
2.7						
2.9						
3.0 3.1						
3.2 3.3						
3.4 3.5						
3.6						
3.7						
3.9 4.0						
4.1 4.2						
4.3						
4.4 4.5						
4.6 4.7						
4.8 4.9						
5.0						
5.2						
5.3 5.4						
5.5 5.6						
5.7						
5.9						
6.0						
Excavation Method: Light Cable Percussive	Pilot hole					
Comments: Pilot Hole	G/level (mA0	OD): -				
	Water Strike	s (mbgl):	1.20	<u> </u>	-	
Contractor: Ronan Doyle Contractor	Static Water	Level (mbgl):		-		

				BULLASS		
awn consulting	Irial Pit Log: PH18-04					
J				Sheet 1/1		
AWN Project Ref: 18-10021 Client:	Dunnes Stores		Excavation	date: 09	/03/2018	
Ground Level (mAOD): -	Cornelscourt (o Dublin	Geology log		CD	
	Comelocourt, C		Coology log	<u>·</u>	00	
SUBSURFACE PROFILE	Depth mbgl	Lithology		BACKFILL	_	
Ground surfac	ce					
0.0 0.1						
0.2 0.3 Grey loose gravelly FILL material used for engineering purposes	- 0.20					
0.4						
0.6 Stiff to firm dark brown slightly sandy, slightly gravelly CLAY with	- 0.60			ELS A		
0.7 some cobbles and boulders, Sand is fine to coarse. Gravels are 0.8 sub-angular to sub-rounded. Damp.			3RAVE			
0.9 1.0				ITH O		
1.1				Р		
1.3 Detail: 1.3m. Groundwater Strike, slow ingress		_		KFILL		
1.4 1.5				BAC		
1.6 1.7						
1.8						
2.0	2.00					
2.1 2.2 End of Trial Pit 2.00 m						
2.3 2.4						
2.5						
2.7						
2.9						
3.0 3.1						
3.2 3.3						
3.4						
3.6						
3.7 3.8						
3.9 4.0						
4.1	1					
4.3	1					
4. 4 4.5	1					
4.6 4.7	1					
4.8 4.9	1					
5.0	1					
5.2	1					
5.3 5.4	1					
5.5 5.6	1					
5.7	1					
5.9	1					
6.0						
Excavation Method: Light Cable Percussive	Pilot hole					
Comments: Pilot Hole	G/level (mA	OD): -				
	Water Strike	es (mbgl):	1.20	-	-	
Contractor: Ronan Doyle Contractor	Static Water	Level (mbgl):		-		

APPENDIX B

Laboratory Results (JEL 18/3937) & Soil Analysis Tables

AWN Consulting Tecpro Building

Dublin Dublin 17 Ireland

Clonshaugh Business & Technology Park

Exova Jones Environmental

Registered Address : Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8P

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Colm Driver
Date :	29th March, 2018
Your reference :	18-10021
Our reference :	Test Report 18/3937 Batch 1
Location :	Cornelscourt
Date samples received :	15th March, 2018
Status :	Final report
Issue :	1

Sixty five samples were received for analysis on 15th March, 2018 of which fourteen were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Where Waste Acceptance Criteria Suite (EC Decision of 19 December 2002 (2003/33/EC)) has been requested, all analyses have been performed using the relevant EN methods where they exist.

Compiled By:

lun

Bruce Leslie Project Co-ordinator

Client Name: Reference: Location: Contact: JE Job No.:

AWN Consulting 18-10021 Cornelscourt Colm Driver 18/3937

Report : Solid

J E Sample No.	11-12	25-26	39-40	46	52-53	57-58	63-65	66-67	69-70	71-72	l		
Sample ID	TP18-02	TP18-04	TP18-06	TP18-07	TP18-08	TP18-09	TP18-10	TP18-10	TP18-11	TP18-11			
Depth	2.30	2.10	2.20	2.10	2.20	2.20	2.30	3.40	3.30	3.50	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	٧J	٧J	٧J	J	JΤ	JT	VJT	٧J	JТ	JТ	1		
Sample Date	12/03/2018	12/03/2018	12/03/2018	12/03/2018	12/03/2018	12/03/2018	13/03/2018	13/03/2018	13/03/2018	13/03/2018	1		
Sample Tune	0-1	0.0	Coll	0.00	Call	0-11	0,00,2010	0,00,2010	0.00	0,00,2010	1		
Sample Type	501	501	501	501	501	501	501	501	501	501			
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018			NO.
Antimony	-	-	-	-	-	-	2	-	-	2	<1	mg/kg	TM30/PM15
Arsenic [#]	10.8	9.1	11.0	9.8	-	10.7	31.5	-	-	7.5	<0.5	mg/kg	TM30/PM15
Barium #	-	-	-	-	-	-	74	-	-	46	<1	mg/kg	TM30/PM15
Cadmium [#]	1.5	1.9	2.2	1.9	-	2.6	1.8	-	-	0.9	<0.1	mg/kg	TM30/PM15
Chromium [#]	50.7	40.5	45.0	54.3	-	38.9	48.0	-	-	54.5	<0.5	mg/kg	TM30/PM15
Copper [#]	22	19	24	25	-	17	25	-	-	17	<1	mg/kg	TM30/PM15
Lead [#]	16	13	23	17	-	17	25	-	-	14	<5	mg/kg	TM30/PM15
Mercury*	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	-	-	<0.1	<0.1	mg/kg	TM30/PM15
Molybdenum "	-	-	-	-	-	-	4.0	-	-	2.8	<0.1	mg/kg	TM30/PM15
	44.5	34.1	40.4	39.0	-	34.2	39.2	-	-	22.7	<0.7	mg/kg	TM30/PM15
	<1	1	<1	1	-	1	212	-	-	152	<50	mg/kg	TM50/PM15
Water Soluble Boron #	-	-		_	_	-	0.6	-	-	0.3	<0.1	mg/kg	TM74/PM32
Zinc [#]	75	68	90	85		70	81			56	<0.1	mg/kg	TM30/PM15
Zinc	15	00	30	00	-	10	01	_	-	50	<.5	ilig/kg	
PAH MS													
Naphthalene #	-	-	-	-	-	-	<0.04	-	-	0.30	<0.04	mg/kg	TM4/PM8
Acenaphthylene	-	-	-	-	-	-	<0.03	-	-	0.25	< 0.03	mg/kg	TM4/PM8
Acenaphthene #	-	-	-	-	-	-	<0.05	-	-	0.23	<0.05	mg/kg	TM4/PM8
Fluorene [#]	-	-	-	-	-	-	0.04	-	-	0.69	<0.04	mg/kg	TM4/PM8
Phenanthrene #	-	-	-	-	-	-	0.10	-	-	1.30	<0.03	mg/kg	TM4/PM8
Anthracene #	-	-	-	-	-	-	<0.04	-	-	<0.04	<0.04	mg/kg	TM4/PM8
Fluoranthene [#]	-	-	-	-	-	-	<0.03	-	-	0.04	<0.03	mg/kg	TM4/PM8
Pyrene [#]	-	-	-	-	-	-	<0.03	-	-	0.14	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	-	-	-	-	-	-	<0.06	-	-	<0.06	<0.06	mg/kg	TM4/PM8
Chrysene [#]	-	-	-	-	-	-	<0.02	-	-	0.03	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	-	-	-	-	-	-	<0.07	-	-	<0.07	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene [#]	-	-	-	-	-	-	<0.04	-	-	<0.04	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	-	-	-	-	-	-	<0.04	-	-	<0.04	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	-	-	-	-	-	-	<0.04	-	-	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#]	-	-	-	-	-	-	<0.04	-	-	<0.04	<0.04	mg/kg	TM4/PM8
Coronene	-	-	-	-	-	-	<0.04	-	-	<0.04	<0.04	mg/kg	TM4/PM8
PAH 6 Total"	-	-	-	-	-	-	<0.22	-	-	<0.22	<0.22	mg/kg	
PAH 17 Total	-	-	-	-	-	-	<0.64	-	-	2.98	<0.64	mg/kg	
Benzo(k)fluorantheno	-	-	-	-	-	-	<0.05	-	-	<0.05	<0.02	mg/kg	TM4/P1VI8
Benzo(i)fluoranthene	-	-	-	-	-	-	<1	-	-	<1	<0.02	ma/ka	TM4/PM8
PAH Surrogate % Recovery	-	-	-	-	-	-	75	-	-	73	<0	%	TM4/PM8
Mineral Oil (C10-C40)	-	-	-	-	-	-	220	-	-	695	<30	mg/kg	TM5/PM8/PM16

Client Name: Reference: Location: Contact: JE Job No.:

AWN Consulting 18-10021 Cornelscourt Colm Driver 18/3937

Report : Solid

J E Sample No.	11-12	25-26	39-40	46	52-53	57-58	63-65	66-67	69-70	71-72			
Sample ID	TP18-02	TP18-04	TP18-06	TP18-07	TP18-08	TP18-09	TP18-10	TP18-10	TP18-11	TP18-11			
Depth	2.30	2.10	2.20	2.10	2.20	2.20	2.30	3.40	3.30	3.50	Discourse		
COC No/misc		-			-	-					Please se abbrevi	e attached n ations and a	otes for all cronyms
COC NO7 misc													
Containers	VJ	٧J	VJ	J	JT	JT	VJT	VJ	JT	JT			
Sample Date	12/03/2018	12/03/2018	12/03/2018	12/03/2018	12/03/2018	12/03/2018	13/03/2018	13/03/2018	13/03/2018	13/03/2018			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1		11.25	Method
Date of Receipt	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	LOD/LOR	Units	No.
TPH CWG													
Aliphatics													
>C5-C6 [#]	<0.1	<0.1	<0.1	-	<0.1	<0.1	0.4	0.8	0.1	2.2	<0.1	mg/kg	TM36/PM12
>C6-C8 #	<0.1	<0.1	<0.1	-	<0.1	<0.1	2.0	4.8	0.3	6.8	<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	<0.1	-	<0.1	<0.1	6.4	7.3	6.0	26.6**	<0.1	mg/kg	TM36/PM12
>C10-C12 [#]	<0.2	<0.2	<0.2	-	<0.2	<0.2	34.8	75.2	80.4	100.6	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 [#]	<4	<4	<4	-	<4	<4	76	178	255	242	<4	mg/kg	TM5/PM8/PM16
>C16-C21 *	<7	<7	<7	-	<7	<7	81	181	276	260	<7	mg/kg	TM5/PM8/PM16
>C21-C35"	</th <th><!--</th--><th><!--</th--><th>-</th><th><!--</th--><th><1</th><th>28</th><th>57</th><th>101</th><th>92</th><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM16</th></th></th></th></th>	</th <th><!--</th--><th>-</th><th><!--</th--><th><1</th><th>28</th><th>57</th><th>101</th><th>92</th><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM16</th></th></th></th>	</th <th>-</th> <th><!--</th--><th><1</th><th>28</th><th>57</th><th>101</th><th>92</th><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM16</th></th></th>	-	</th <th><1</th> <th>28</th> <th>57</th> <th>101</th> <th>92</th> <th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM16</th></th>	<1	28	57	101	92	</th <th>mg/kg</th> <th>TM5/PM8/PM16</th>	mg/kg	TM5/PM8/PM16
>C33-C40	-	-	-	-	-	-	220	-	-	730	<7	mg/kg	TMS/TM36/PM8/PM12/PM16
Total aliphatics C5-35	<19	<19	<19	_	<19	<19	-	504	719	-	<19	mg/kg	TM5/TM38/PM8/PM12/PM16
>C6-C10	-	-	-	-	-	-	8.4	-	-	33.4	<0.1	ma/ka	TM36/PM12
>C10-C25	-	-	-	-	-	-	207	-	-	698	<10	mg/kg	TM5/PM8/PM16
>C25-C35	-	-	-	-	-	-	<10	-	-	13	<10	mg/kg	TM5/PM8/PM16
Aromatics													
>C5-EC7#	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8 [#]	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 [#]	<0.1	<0.1	<0.1	-	<0.1	<0.1	0.6	0.2	<0.1	4.6**	<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	<0.2	<0.2	-	<0.2	<0.2	24.2	53.2	23.2	85.3	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 [#]	<4	<4	<4	-	<4	<4	43	95	150	181	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	<7	<7	<7	-	<7	<7	59	121	206	190	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35"	</th <th><!--</th--><th><!--</th--><th>-</th><th><!--</th--><th><!--</th--><th>23</th><th>42</th><th>66</th><th>57</th><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM16</th></th></th></th></th></th>	</th <th><!--</th--><th>-</th><th><!--</th--><th><!--</th--><th>23</th><th>42</th><th>66</th><th>57</th><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM16</th></th></th></th></th>	</th <th>-</th> <th><!--</th--><th><!--</th--><th>23</th><th>42</th><th>66</th><th>57</th><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM16</th></th></th></th>	-	</th <th><!--</th--><th>23</th><th>42</th><th>66</th><th>57</th><th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM16</th></th></th>	</th <th>23</th> <th>42</th> <th>66</th> <th>57</th> <th><!--</th--><th>mg/kg</th><th>TM5/PM8/PM16</th></th>	23	42	66	57	</th <th>mg/kg</th> <th>TM5/PM8/PM16</th>	mg/kg	TM5/PM8/PM16
>EC33-EC40	-10	-19	-19	-	-19	- 19	<1	-	-	</th <th><19</th> <th>mg/kg</th> <th>TMS/TM38/PM8/PM12/PM16</th>	<19	mg/kg	TMS/TM38/PM8/PM12/PM16
Total aromatics C5-30	-	-	-	-	-	-	150	-	-	518	<26	ma/ka	TM5/TM38/PM8/PM12/PM16
Total aliphatics and aromatics(C5-35)	<38	<38	<38	-	<38	<38	-	815	1164	-	<38	ma/ka	TM5/TM38/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40)	-	-	-	-	-	-	379	-	-	1248	<52	mg/kg	TM5/TM38/PM8/PM12/PM16
>EC6-EC10 [#]	-	-	-	-	-	-	0.6	-	-	4.6	<0.1	mg/kg	TM36/PM12
>EC10-EC25	-	-	-	-	-	-	137	-	-	505	<10	mg/kg	TM5/PM8/PM16
>EC25-EC35	-	-	-	-	-	-	<10	-	-	<10	<10	mg/kg	TM5/PM8/PM16
MTBE [#]	<5	<5	<5	-	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Benzene #	<5	<5	<5	-	<5	<5	9	107	<5	<5	<5	ug/kg	TM31/PM12
Toluene #	<5	<5	<5	-	<5	<5	20	35	<5	<5	<5	ug/kg	TM31/PM12
Ethylbenzene *	<5	<5	<5	-	<5	<5	35	41	<5	1073	<5	ug/kg	TM31/PM12
m/p-Xylene "	<0	<0	<0	-	<0	<0	420	01	97	3483	<5	ug/kg	TM31/PM12
о-лунене	<0	<0	<0	-	<0	<0	02	91	<0	<0	<0	ug/kg	11131/PIVI12
PCB 28 [#]	-	-	-	-	-	-	<5	-	-	<5	<5	ua/ka	TM17/PM8
PCB 52 [#]	-	-	-	-	-	-	<5	-	-	<5	<5	ug/kg	TM17/PM8
PCB 101 #	-	-	-	-	-	-	<5	-	-	<5	<5	ug/kg	TM17/PM8
PCB 118 [#]	-	-	-	-	-	-	<5	-	-	<5	<5	ug/kg	TM17/PM8
PCB 138 [#]	-	-	-	-	-	-	<5	-	-	<5	<5	ug/kg	TM17/PM8

Client Name: Reference: Location: Contact: JE Job No.:

AWN Consulting 18-10021 Cornelscourt Colm Driver 18/3937

Report : Solid

J E Sample No.	11-12	25-26	39-40	46	52-53	57-58	63-65	66-67	69-70	71-72					
Sample ID	TP18-02	TP18-04	TP18-06	TP18-07	TP18-08	TP18-09	TP18-10	TP18-10	TP18-11	TP18-11					
Depth	2.30	2.10	2.20	2.10	2.20	2.20	2.30	3.40	3.30	3.50	Please se	e attached n	otes for all		
COC No / misc											abbievi	abbreviations and acronyn			
Containers	VJ	٧J	٧J	J	JΤ	JΤ	VJT	VJ	JΤ	JΤ					
Sample Date	12/03/2018	12/03/2018	12/03/2018	12/03/2018	12/03/2018	12/03/2018	13/03/2018	13/03/2018	13/03/2018	13/03/2018					
Sample Type	Soil														
Batch Number	1	1	1	1	1	1	1	1	1	1		Linite	Method		
Date of Receipt	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	LOD/LOR	Units	No.		
PCB 153 [#]	-	-	-	-	-	-	<5	-	-	<5	<5	ug/kg	TM17/PM8		
PCB 180 [#]	-	-	-	-	-	-	<5	-	-	<5	<5	ug/kg	TM17/PM8		
Total 7 PCBs [#]	-	-	-	-	-	-	<35	-	-	<35	<35	ug/kg	TM17/PM8		
Dha a a l #							.0.01			.0.01	-0.01		TM26/DM24		
Phenoi	-	-	-	-	-	-	<0.01	-	-	<0.01	<0.01	mg/kg	1 11/20/1911/21		
Natural Moisture Content	15.2	10.5	13.0	-	14.6	12.0	11.3	10.1	12.7	9.6	<0.1	%	PM4/PM0		
Moisture Content (% Wet Weight)	-	-	-	-	-	-	10.2	-	-	8.8	<0.1	%	PM4/PM0		
% Dry Matter 105°C	-	-	-	-	-	-	87.7	-	-	90.9	<0.1	%	NONE/PM4		
Hexavalent Chromium *	-	-	-	-	-	-	<0.3	-	-	<0.3	<0.3	mg/kg	TM38/PM20		
	-	-	-	-	-	-	48.0	-	-	54.5	<0.5	mg/kg	NONE/NONE		
Total Cyanide [#]	-	-	-	-	-	-	<0.5	-	-	<0.5	<0.5	mg/kg	TM89/PM45		
Total Organic Carbon #	-	-	-	-	-	-	0.31	-	-	0.22	<0.02	%	TM21/PM24		
Sulphide	-	-	-	-	-	-	<10	-	-	<10	<10	mg/kg	TM106/PM119		
							_			_		-			
Elemental Sulphur	-	-	-	-	-	-	5	-	-	5	<1	mg/kg	TM108/PM114		
pri					_	_	0.02	_		0.52	<0.01	pri unita	1107 3/1 1011		
Mass of raw test portion	-	-	-	-	-	-	0.1031	-	-	0.0994		kg	NONE/PM17		
Mass of dried test portion	-	-	-	-	-	-	0.09	-	-	0.09		kg	NONE/PM17		

Client Name: Reference: Location: Contact: JE Job No.: AWN Consulting 18-10021 Cornelscourt Colm Driver 18/3937

Report : Solid

	10/0001									
J E Sample No.	81-82	99-100	106	128-130						
Sample ID	TP18-13	TP18-16	PH18-01	PH18-04						
Depth	2.20	2.60	1.90	2.00				Please se	e attached n	otes for all
COC No / misc								abbrevi	ations and a	cronyms
Containers	1.7	1.1	1	VIT						
Oceanda Dete	51		J	v J 1						
Sample Date	13/03/2018	13/03/2018	09/03/2018	09/03/2018						
Sample Type	Soil	Soil	Soil	Soil						1
Batch Number	1	1	1	1				 LOD/LOR	Units	Method No.
Antimony	13/03/2010	13/03/2010	13/03/2010	13/03/2010				-1	ma/ka	TM30/PM15
Arsenic [#]	-	-	11.1	-				<0.5	ma/ka	TM30/PM15
Barium [#]	-	-	-	-				<1	mg/kg	TM30/PM15
Cadmium [#]	-	-	0.6	-				<0.1	mg/kg	TM30/PM15
Chromium [#]	-	-	56.8	-				<0.5	mg/kg	TM30/PM15
Copper [#]	-	-	20	-				<1	mg/kg	TM30/PM15
Lead [#]	-	-	13	-				<5	mg/kg	TM30/PM15
Mercury #	-	-	<0.1	-				<0.1	mg/kg	TM30/PM15
Molybdenum #	-	-	-	-				 <0.1	mg/kg	TM30/PM15
Nickel [#]	-	-	42.0	-				<0.7	mg/kg	TM30/PM15
Selenium [#]	-	-	<1	-				 <1	mg/kg	TM30/PM15
Total Sulphate as SO4 #	-	-	-	-				<50	mg/kg	TM50/PM29
Water Soluble Boron *	-	-	-	-				<0.1	mg/kg	TM74/PM32
Zinc"	-	-	64	-				<5	mg/kg	TM30/PM15
PAH MS										
Naphthalene [#]	-	-	-	-				<0.04	ma/ka	TM4/PM8
Acenaphthylene	-	-	-	-				<0.03	ma/ka	TM4/PM8
Acenaphthene #	-	-	-	-				<0.05	mg/kg	TM4/PM8
Fluorene [#]	-	-	-	-				<0.04	mg/kg	TM4/PM8
Phenanthrene #	-	-	-	-				<0.03	mg/kg	TM4/PM8
Anthracene #	-	-	-	-				<0.04	mg/kg	TM4/PM8
Fluoranthene [#]	-	-	-	-				<0.03	mg/kg	TM4/PM8
Pyrene [#]	-	-	-	-				<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	-	-	-	-				<0.06	mg/kg	TM4/PM8
Chrysene #	-	-	-	-				<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene "	-	-	-	-				 <0.07	mg/kg	TM4/PM8
Benzo(a)pyrene "	-	-	-	-				<0.04	mg/kg	
Indeno(123cd)pyrene	-	-	-	-				<0.04	mg/kg	
Benzo(ahi)pervlene [#]	-		_	_				<0.04	mg/kg	TM4/PM8
Coronene	-	-	-	-				<0.04	ma/ka	TM4/PM8
PAH 6 Total [#]	-	-	-	-				<0.22	mg/kg	TM4/PM8
PAH 17 Total	-	-	-	-				<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	-	-	-	-				<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	-	-	-	-				<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	-	-	-	-				<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	-	-	-	-				 <0	%	TM4/PM8
Mineral Oil (C10-C40)	-	-	-	-				<30	mg/kg	TM5/PM8/PM16
	1	1	1	1	1	1		1		1

Client Name: Reference: Location: Contact: JE Job No.: AWN Consulting 18-10021 Cornelscourt Colm Driver 18/3937

Report : Solid

SE 500 NO.:	10/0307							_		
J E Sample No.	81-82	99-100	106	128-130						
Sample ID	TP18-13	TP18-16	PH18-01	PH18-04						
Depth	2.20	2.60	1.90	2.00				Disease		
COC No / misc								Please se abbrevi	e attached n ations and a	otes for all cronyms
Containers								1		
Containers	JI	JI	J	VJI				1		
Sample Date	13/03/2018	13/03/2018	09/03/2018	09/03/2018				1		
Sample Type	Soil	Soil	Soil	Soil						•
Batch Number	1	1	1	1					Units	Method
Date of Receipt	15/03/2018	15/03/2018	15/03/2018	15/03/2018				LOD/LOIX	Onita	No.
TPH CWG										
Aliphatics										
>C5-C6 [#]	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C6-C8 [#]	<0.1	0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	3.9	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C10-C12*	<0.2	56.1	<0.2	<0.2				<0.2	mg/kg	TM5/PM8/PM16
>C12-C16*	<4	192	<4	<4				<4	mg/kg	TM5/PM8/PM16
>C16-C21 "	</td <td>219</td> <td><!--</td--><td><!--</td--><td></td><td></td><td></td><td><!--</td--><td>mg/kg</td><td>TM5/PM8/PM16</td></td></td></td>	219	</td <td><!--</td--><td></td><td></td><td></td><td><!--</td--><td>mg/kg</td><td>TM5/PM8/PM16</td></td></td>	</td <td></td> <td></td> <td></td> <td><!--</td--><td>mg/kg</td><td>TM5/PM8/PM16</td></td>				</td <td>mg/kg</td> <td>TM5/PM8/PM16</td>	mg/kg	TM5/PM8/PM16
>021-035	-		-					<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40	-	-	-	-				<26	mg/kg	TM5/TM38/PM8/PM12/PM16
Total aliphatics C5-35	<19	555	<19	<19				<19	mg/kg	TM5/TM38/PM8/PM12/PM16
- >C6-C10	-	-	-	-				<0.1	mg/kg	TM36/PM12
>C10-C25	-	-	-	-				<10	mg/kg	TM5/PM8/PM16
>C25-C35	-	-	-	-				<10	mg/kg	TM5/PM8/PM16
Aromatics										
>C5-EC7 #	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC7-EC8 [#]	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC8-EC10 [#]	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	23.2	<0.2	<0.2				<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16"	<4	134	<4	<4				<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 "	<7	54	<1	<7				<1	mg/kg	TM5/PW0/PW10
>EC21-EC35	-		-	-				<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 #	<19	387	<19	<19				<19	mg/kg	TM5/TM38/PM8/PM12/PM16
Total aromatics C5-40	-	-	-	-				<26	mg/kg	TM5/TM38/PM8/PM12/PM16
Total aliphatics and aromatics(C5-35)	<38	942	<38	<38				<38	mg/kg	TM5/TM38/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40)	-	-	-	-				<52	mg/kg	TM5/TM38/PM8/PM12/PM16
>EC6-EC10 [#]	-	-	-	-				<0.1	mg/kg	TM36/PM12
>EC10-EC25	-	-	-	-				<10	mg/kg	TM5/PM8/PM16
>EC25-EC35	-	-	-	-				<10	mg/kg	TM5/PM8/PM16
MTBE [#]	<5	<5	<5	<5				<5	ug/kg	TM31/PM12
Benzene *	<5	<5	<5	<5				<5	ug/kg	TM31/PM12
loluene"	<5	<5	<5	<5				<5	ug/kg	TM31/PM12
Ethyldenzene	<5	38	<5	<5				<5	ug/kg	TM31/PM12
o-Xvlene [#]	<5	<5	<5	<5				<5	ug/kg	TM31/PM12
								~	-39	
PCB 28 [#]	-	-	-	-				<5	ug/kg	TM17/PM8
PCB 52 [#]	-	-	-	-				<5	ug/kg	TM17/PM8
PCB 101 #	-	-	-	-				<5	ug/kg	TM17/PM8
PCB 118 [#]	-	-	-	-				<5	ug/kg	TM17/PM8
PCB 138 [#]	-	-	-	-				<5	ug/kg	TM17/PM8

Client Name: Reference: Location: Contact: JE Job No.: AWN Consulting 18-10021 Cornelscourt Colm Driver 18/3937

Report : Solid

JE JOD NO.:	10/3937									
J E Sample No.	81-82	99-100	106	128-130				Ì		
Sample ID	TP18-13	TP18-16	PH18-01	PH18-04						
Denth	2 20	2.60	1.90	2.00				1		
COC No / misc	2.20	2.00	1.50	2.00				Please se abbrevi	e attached ne ations and ac	otes for all cronyms
Containars	17	1.7		VIT				1		
Sampla Data	J I	J I	J	V J I				1		
Sample Date	13/03/2018	13/03/2018	09/03/2018	09/03/2018				1		
Sample Type	501	Soli	Soli	501				 		
Batch Number	1	1	1	1				LOD/LOR	Units	Method No.
Date of Receipt	15/03/2018	15/03/2018	15/03/2018	15/03/2018						
PCB 153 #	-	-	-	-				<5	ug/kg	TM17/PM8
PCB 180 [#]	-	-	-	-				<5	ug/kg	TM17/PM8
Total 7 PCBs*	-	-	-	-				<35	ug/kg	TM17/PM8
Phenol [#]	-	-	-	-				<0.01	mg/kg	TM26/PM21
Natural Moisture Content	13.4	14.4	14.6	13.9				<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	-	-	-	-				<0.1	%	PM4/PM0
% Dry Matter 105°C	-	-	-	-				<0.1	%	NONE/PM4
								.0.2		TM00/DM00
Hexavalent Chromium "	-	-	-	-				<0.3	mg/kg	1M38/PM20
Chromium III	-	-	-	-				<0.5	mg/kg	NONE/NONE
Total Cyanide #	-	-	-	-				<0.5	mg/kg	TM89/PM45
Total Organic Carbon #	-	-	-	-				<0.02	%	TM21/PM24
0								10		
Sulphide	-	-	-	-				<10	mg/kg	TM106/PM119
Elemental Sulphur	-	-	-	-				<1	mg/kg	TM108/PM114
pH [#]	-	-	-	-				<0.01	pH units	TM73/PM11
Mass of raw test portion	-	-	-	-					kg	NONE/PM17
Mass of dried test portion	-	-	-	-					kg	NONE/PM17
		1	1	1		1	1	1	1	1

Client Name: Reference: Location: Contact: JE Job No.: AWN Consulting 18-10021 Cornelscourt Colm Driver 18/3937

Report : CEN 10:1 1 Batch

									-		L		
J E Sample No.	63-65	71-72									1		
Sample ID	TP18-10	TP18-11											
Depth	2.30	3.50									Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VIT	IT									1		
Containera	v 5 1	51									1		
Sample Date	13/03/2018	13/03/2018											
Sample Type	Soil	Soil											
Batch Number	1	1										Unite	Method
Date of Receipt	15/03/2018	15/03/2018									LOD/LOK	OTILS	No.
Dissolved Antimony#	<0.002	<0.002									<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10) #	<0.02	<0.02									<0.02	mg/kg	TM30/PM17
Dissolved Arsenic [#]	<0.0025	<0.0025									<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025									<0.025	mg/kg	TM30/PM17
Dissolved Barium #	0.045	0.004									<0.003	mg/l	TM30/PM17
Dissolved Barium (A10) #	0.45	0.04									<0.03	mg/kg	TM30/PM17
Dissolved Boron #	<0.012	<0.012									<0.012	mg/l	TM30/PM17
Dissolved Boron (A10) #	<0.12	<0.12									<0.12	mg/kg	TM30/PM17
Dissolved Cadmium #	<0.0005	<0.0005									<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10) #	<0.005	<0.005									<0.005	mg/kg	TM30/PM17
Dissolved Chromium [#]	<0.0015	<0.0015									<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10) #	<0.015	<0.015									<0.015	mg/kg	TM30/PM17
Dissolved Copper [#]	<0.007	<0.007									<0.007	mg/l	TM30/PM17
Dissolved Copper (A10) #	<0.07	<0.07									<0.07	mg/kg	TM30/PM17
Dissolved Lead [#]	<0.005	<0.005									<0.005	mg/l	TM30/PM17
Dissolved Lead (A10) #	<0.05	<0.05									<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum #	0.009	0.006									<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10) #	0.09	0.06									<0.02	mg/kg	TM30/PM17
Dissolved Nickel [#]	<0.002	<0.002									<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10) #	<0.02	<0.02									<0.02	mg/kg	TM30/PM17
Dissolved Selenium [#]	<0.003	<0.003									<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10) #	<0.03	<0.03									<0.03	mg/kg	TM30/PM17
Dissolved Zinc [#]	<0.003	<0.003									<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10) #	<0.03	<0.03									<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF [#]	<0.00001	<0.00001									<0.00001	mg/l	TM61/PM38
Mercury Dissolved by CVAF #	<0.0001	<0.0001									<0.0001	mg/kg	TM61/PM38
Phenol	<0.01	<0.01									<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1									<0.1	mg/kg	TM26/PM0
Fluoride	<0.3	<0.3									<0.3	mg/l	TM173/PM0
Fluoride	<3	<3									<3	mg/kg	TM173/PM0
Sulphate as SO4 #	0.86	0.30									<0.05	mg/l	TM38/PM0
Sulphate as SO4 #	8.6	3.0									<0.5	mg/kg	TM38/PM0
Chloride #	<0.3	<0.3									<0.3	mg/l	TM38/PM0
Chloride #	<3	<3									<3	mg/kg	TM38/PM0
Ammoniacal Nitrogen as N#	0.05	0.07									<0.03	mg/l	TM38/PM0
Ammoniacal Nitrogen as N [#]	0.5	0.7									<0.3	mg/kg	TM38/PM0
Dissolved Organia Carbar	2	3									-0	~~~/	
Dissolved Organic Carbon	2 	3									<2	mg/la	
	<20	50									<20	mg/kg	TM20/PW0
Total Dissolved Solida #	080	560									~350	ma/ka	TM20/PW0
I UIAI DISSUIVEU SUIIUS	900	500	1	1	1	1	1	1	1	1	~000	ing/Kg	111120/11110

EN-12457-2 Result Report

Mass of sample taken (kg)	-	Dry Matter Content Ratio (%) =		87.7		
Mass of dry sample (kg) =	0.09	Leachant Volume (I)		-		
Particle Size <4mm =	>95%	Eluate Volume (I)		0.75		
JEFL Job No		18/3937	Land	fill Waste Ac	ceptance	
Sample No		65		Criteria Lim	nits	
Client Sample No		TP18-10				
Depth/Other		2.30				
Sample Date		13/03/2018	Inert	Stable Non-reactive	Hazardous	
Batch No		1				
Solid Waste Analysis						
Total Organic Carbon (%)	0.31		3	5	6	
Sum of BTEX (mg/kg)	0.551		6	-	-	
Sum of 7 PCBs (mg/kg)	<0.035		1	-	-	
Mineral Oil (mg/kg)	220		500	-	-	
PAH Sum of 6 (mg/kg)	<0.22		-	-	-	
PAH Sum of 17 (mg/kg)	<0.64		100	-	-	
Eluate Analysis	10:1 concn leached A10		Limit le BS EN	Limit values for compliance leaching test using BS EN 12457-2 at L/S 10 I/kg		
	mg/kg			mg/kg		
Arsenic	<0.025		0.5	2	25	
Barium	0.45		20	100	300	
Cadmium	< 0.005		0.04	1	5	
Chromium	<0.015		0.5	10	70	
Copper	<0.07		2	50	100	
Mercury	<0.0001		0.01	0.2	2	
Molybdenum	0.09		0.5	10	30	
Nickel	<0.02		0.4	10	40	
Lead	<0.05		0.5	10	50	
Antimony	<0.02		0.06	0.7	5	
Selenium	<0.03		0.1	0.5	7	
Zinc	<0.03		4	50	200	
Chloride	<3		800	15000	25000	
Fluoride	<3		10	150	500	
Sulphate as SO4	8.6		1000	20000	50000	
Total Dissolved Solids	980		4000	60000	100000	
Phenol	<0.1		1	-	-	
Dissolved Organic Carbon	<20		500	800	1000	

EN-12457-2 Result Report

Mass of sample taken (kg)	-	Dry Matter Content Ratio (%) =		90.9		
Mass of dry sample (kg) =	0.09	Leachant Volume (I)		-		
Particle Size <4mm =	>95%	Eluate Volume (I)		0.82		
JEFL Job No		18/3937	Land	ill Waste Ac	ceptance	
Sample No		72		Criteria Lin	nits	
Client Sample No		TP18-11				
Depth/Other		3.50				
Sample Date		13/03/2018	Inert	Stable Non-reactive	Hazardous	
Batch No		1				
Solid Waste Analysis						
Total Organic Carbon (%)	0.22		3	5	6	
Sum of BTEX (mg/kg)	4.556		6	-	-	
Sum of 7 PCBs (mg/kg)	<0.035		1	-	-	
Mineral Oil (mg/kg)	695		500	-	-	
PAH Sum of 6 (mg/kg)	<0.22		-	-	-	
PAH Sum of 17 (mg/kg)	2.98		100	-	-	
Eluate Analysis	10:1 concn leached A10		Limit le BS EN	Limit values for compliance leaching test using BS EN 12457-2 at L/S 10 I/kg		
	mg/kg			mg/kg		
Arsenic	<0.025		0.5	2	25	
Barium	0.04		20	100	300	
Cadmium	< 0.005		0.04	1	5	
Chromium	<0.015		0.5	10	70	
Copper	<0.07		2	50	100	
Mercury	<0.0001		0.01	0.2	2	
Molybdenum	0.06		0.5	10	30	
Nickel	<0.02		0.4	10	40	
Lead	<0.05		0.5	10	50	
Antimony	<0.02		0.06	0.7	5	
Selenium	<0.03		0.1	0.5	7	
Zinc	<0.03		4	50	200	
Chloride	<3		800	15000	25000	
Fluoride	<3		10	150	500	
Sulphate as SO4	3.0		1000	20000	50000	
Total Dissolved Solids	560		4000	60000	100000	
Phenol	<0.1		1	-	-	
Dissolved Organic Carbon	30		500	800	1000	

AWN Consulting
18-10021
Cornelscourt
Colm Driver

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	EPH Interpretation
18/3937	1	TP18-10	2.30	63-65	Degraded diesel
18/3937	1	TP18-11	3.50	71-72	Degraded diesel

Matrix : Solid

Client Name:	AWN Consulting
Reference:	18-10021
Location:	Cornelscourt
Contact:	Colm Driver

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

Ryan Butterworth Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
18/3937	1	TP18-10	2.30	64	26/03/2018	General Description (Bulk Analysis)	soil-stones
					26/03/2018	Asbestos Fibres	NAD
					26/03/2018	Asbestos Fibres (2)	NAD
					26/03/2018	Asbestos ACM	NAD
					26/03/2018	Asbestos ACM (2)	NAD
					26/03/2018	Asbestos Type	NAD
					26/03/2018	Asbestos Type (2)	NAD
					26/03/2018	Asbestos Level Screen	NAD
18/3937	1	TP18-11	3.50	71	26/03/2018	General Description (Bulk Analysis)	soil-stones
					26/03/2018	Asbestos Fibres	NAD
					26/03/2018	Asbestos Fibres (2)	NAD
					26/03/2018	Asbestos ACM	NAD
					26/03/2018	Asbestos ACM (2)	NAD
					26/03/2018	Asbestos Type	NAD
					26/03/2018	Asbestos Type (2)	NAD
					26/03/2018	Asbestos Level Screen	NAD

Client Name:	AWN Consulting
Reference:	18-10021
Location:	Cornelscourt
Contact:	Colm Driver

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason						
	No deviating sample report results for job 18/3937											

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 18/3937

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

(
#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.				
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
TM17	Modified US EPA method 8270. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified USEPA 415.1. Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21	As received solid or water samples are extracted in Methanol: Sodium Hydroxide (0.1M NaOH) (60:40) by orbital shaker.	Yes		AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM17	Modified method EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM50	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	PM29	Dried and ground solid sample is boiled with dilute hydrochloric acid, the resulting liquor is then analysed.	Yes		AD	Yes
TM60	Modified USEPA 9060. Determination of TOC by calculation from Total Carbon and Inorganic Carbon using a TOC analyser, the carbon in the sample is converted to CO2 and then passed through a non-dispersive infrared gas analyser (NDIR).	PM0	No preparation is required.			AR	Yes
TM61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM38	Samples are brominated to reduce all mercury compounds to Mercury (II) which is analysed using method TM061.	Yes		AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
ТМ73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes		AD	Yes
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide and Thiocyanate analysis.	Yes		AR	Yes

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM106	Determination of Sulphide by Skalar Continuous Flow Analyser	PM119	As received solid samples are extracted with 1M NaOH by orbital shaker for Sulphide and Thiocyanate analysis.			AR	Yes
TM108	Determination of Elemental Sulphur by Reversed Phase High Performance Liquid Chromatography with Ultra Violet spectroscopy.	PM114	End over end extraction of dried and crushed soil samples for organic analysis. The solvent mix varies depending on analysis required			AD	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AR	Yes
NONE	No Method Code	PM17	Modified method EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	

Appendix - Methods used for WAC (2003/33/EC)

Leachate tests	
101/kg· 4mm	I.S. EN 12457-2:2002 Specified particle size; water added to L/S ratio; capped; agitated for 24 ± 0.5 hours; eluate settled and
10i/Kg, 4mm	filtered over 0.45 μm membrane filter.
Eluate analysis	
As	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ва	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cd	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cr total	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cu	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Hg	I.S. EN 13370 rec. EN 1483 (CVAAS)
Мо	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ni	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Pb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Sb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Se	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Zn	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Chloride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Fluoride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Sulphate	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Phenol index	I.S. EN 13370 rec. ISO 6439 (4-Aminoantipyrine spectrometic methods after distillation)* (BY HPLC - Jones Env)
DOC	I.S. EN 1484
TDS	I.S. EN 15216
Compositional analys	sis
тос	I.S. EN 13137 Method B: carbonates removed with acid; TOC by combustion.
BTEX	GC-FID
PCB7**	I.S. EN 15308 analysis by GC-ECD.
Mineral oil	I.S. EN 14039 C10 to C40 analysis by GC-FID.
PAH17***	I.S. EN 15527 PAH17 analysis by GC-MS
Metals	I.S. EN 13657 - Aqua regia digestion: EN ISO 11885 (ICP-OES)
Other	
	I.S. EN 14346 sample is dried to a constant mass in an oven at 105 ± 3 °C; Method B Water content by direct Karl-Fischer-
Dry matter	titration and either volumetric or coulometric detection.
LOI	I.S. EN 15169 Difference in mass after heating in a furnace up to 550 ± 25 °C.
ANC	CEN/TS 15364 Determined by amouns of acid or base needed to cover the pH range
Notes	

*If not suitable due to LOD, precision, etc., any other suitable method can be used, e.g. AFS, ICP-MS **PCB-28, PCB-52, PCB-101, PCB-118, PCB-138, PCB-153 and PCB-180

***Naphthalene, Acenaphthylene, Acenaphthene, Anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Benzo(a)pyrene, Chrysene, Coronene, Dibenzo(a,h)anthracene, Fluorene, Fluoranthene, Indeno(1,2,3-c,d)pyrene, Phenanthrene and Pyrene.

	AWN Consulting Ltd.			So	oil Samples during	Site Invesitgation			Samples taken from Previous assessment																
Report:	Solid (Soil samples)		Sample ID	TP18-10	TP18-10	TP18-11	TP18-11	TP18-16	TPA	TPA	TPB	TPB	TPC	TPC	TPD	TPD	TPE	TPE	TPF	TPF	TPG	TPG	TPH	TPH	TPI
пероп.	cond (con samples)		Depth (m)	2.30	3.40	3.30	3.50	2.60	2.4	2.9	1.2	2.5	2	3	1.7	2.7	1.5	2.5	2.2	3.1	2.1	3.1	1.2	2.4	2.7
Client:			Containers	VJT	٧J	JT	JT	JT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Client ref:	18_10021		Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Location:	Cornelscourt, Co. Dublin		Sampled Date	15/03/2018	15/03/2018	15/03/2018	15/03/2018		15/02/2000	15/02/2000	15/02/2000	15/02/2000	15/02/2000	15/02/2000	15/02/2000	15/02/2000	15/02/2000	15/02/2000	15/02/2000	15/02/2000	15/02/2000	15/02/2000	15/02/2000	15/02/2000	15/02/2000
CAS Number	Test	Units																							
INTERPRETATION	EPH CWG Interpretation	None		Degraded Diesel			Degraded Diesel																		
	TPH CWG																								
	Aliphatics		LOD																						
GTC05C35AL	Total aliphatics C5-35	mg/kg	<19	229	504	719	730	555									NT								
	Aromatics																								
GTEC05EC35AR	Total aromatics C5-35	mg/kg	<19	150	815	1164	518	387																	
GTC05C35ALAR	Total aliphatics and aromatics(C5-35)	mg/kg	<38	379	NT	NT	1248	942									NI								
1634-04-4	MTBE"	mg/kg	<5	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td></lod<></td></lod<>	<lod< td=""><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td></lod<>	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
71-43-2	Benzene "	mg/kg	<5	0.009	0.107	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2.575</td><td>1.621</td><td>1.018</td><td>0.434</td><td></td><td></td><td></td><td></td><td><lod< td=""><td><lod< td=""><td>0.611</td><td>NT</td><td>0.633</td><td>NT</td><td></td><td></td><td><u> </u></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2.575</td><td>1.621</td><td>1.018</td><td>0.434</td><td></td><td></td><td></td><td></td><td><lod< td=""><td><lod< td=""><td>0.611</td><td>NT</td><td>0.633</td><td>NT</td><td></td><td></td><td><u> </u></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2.575</td><td>1.621</td><td>1.018</td><td>0.434</td><td></td><td></td><td></td><td></td><td><lod< td=""><td><lod< td=""><td>0.611</td><td>NT</td><td>0.633</td><td>NT</td><td></td><td></td><td><u> </u></td></lod<></td></lod<></td></lod<>	2.575	1.621	1.018	0.434					<lod< td=""><td><lod< td=""><td>0.611</td><td>NT</td><td>0.633</td><td>NT</td><td></td><td></td><td><u> </u></td></lod<></td></lod<>	<lod< td=""><td>0.611</td><td>NT</td><td>0.633</td><td>NT</td><td></td><td></td><td><u> </u></td></lod<>	0.611	NT	0.633	NT			<u> </u>
108-88-3	Toluene"	mg/kg	<5	0.02	0.035	<lod< td=""><td><lod< td=""><td><lod< td=""><td>4.307</td><td>1.47</td><td>2.976</td><td>1.342</td><td>1</td><td></td><td></td><td></td><td><lod< td=""><td><lod< td=""><td>1.251</td><td>NT</td><td>0.786</td><td>NT</td><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>4.307</td><td>1.47</td><td>2.976</td><td>1.342</td><td>1</td><td></td><td></td><td></td><td><lod< td=""><td><lod< td=""><td>1.251</td><td>NT</td><td>0.786</td><td>NT</td><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>4.307</td><td>1.47</td><td>2.976</td><td>1.342</td><td>1</td><td></td><td></td><td></td><td><lod< td=""><td><lod< td=""><td>1.251</td><td>NT</td><td>0.786</td><td>NT</td><td></td><td></td><td></td></lod<></td></lod<></td></lod<>	4.307	1.47	2.976	1.342	1				<lod< td=""><td><lod< td=""><td>1.251</td><td>NT</td><td>0.786</td><td>NT</td><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td>1.251</td><td>NT</td><td>0.786</td><td>NT</td><td></td><td></td><td></td></lod<>	1.251	NT	0.786	NT			
100-41-4	Ethylbenzene "	mg/kg	<5	0.035	0.041	<lod< td=""><td>1073</td><td><lod< td=""><td>14.878</td><td>6.383</td><td>9.71</td><td>5.391</td><td></td><td>/</td><td>IT</td><td></td><td><lod< td=""><td><lod< td=""><td>3.109</td><td>NT</td><td>4.654</td><td>NT</td><td></td><td>NT</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	1073	<lod< td=""><td>14.878</td><td>6.383</td><td>9.71</td><td>5.391</td><td></td><td>/</td><td>IT</td><td></td><td><lod< td=""><td><lod< td=""><td>3.109</td><td>NT</td><td>4.654</td><td>NT</td><td></td><td>NT</td><td></td></lod<></td></lod<></td></lod<>	14.878	6.383	9.71	5.391		/	IT		<lod< td=""><td><lod< td=""><td>3.109</td><td>NT</td><td>4.654</td><td>NT</td><td></td><td>NT</td><td></td></lod<></td></lod<>	<lod< td=""><td>3.109</td><td>NT</td><td>4.654</td><td>NT</td><td></td><td>NT</td><td></td></lod<>	3.109	NT	4.654	NT		NT	
P_M_XYLENE	m/p-Xylene #	mg/kg	<5	0.425	0.115	0.097	3.483	38	51 722	20.461	26.262	26.449					0.029	0.029	10.265	NT	16 506	NT			
95-47-6	o-Xylene [#]	mg/kg	<5	0.062	0.009	<lod< td=""><td><lod< td=""><td><lod< td=""><td>51.752</td><td>20.401</td><td>30.302</td><td>20.440</td><td colspan="2"></td><td colspan="2"></td><td>0.020</td><td>0.020</td><td>10.303</td><td>111</td><td>10.500</td><td>101</td><td></td><td></td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>51.752</td><td>20.401</td><td>30.302</td><td>20.440</td><td colspan="2"></td><td colspan="2"></td><td>0.020</td><td>0.020</td><td>10.303</td><td>111</td><td>10.500</td><td>101</td><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td>51.752</td><td>20.401</td><td>30.302</td><td>20.440</td><td colspan="2"></td><td colspan="2"></td><td>0.020</td><td>0.020</td><td>10.303</td><td>111</td><td>10.500</td><td>101</td><td></td><td></td><td></td></lod<>	51.752	20.401	30.302	20.440					0.020	0.020	10.303	111	10.500	101			
-	Total Mineral Oil	mg/kg	<1	220	NT	NT	695	NT	393	338	11	635	13	1	8	7	5	74	5	194	379	690	7	42	7
Legend <lod NT</lod 	Other Samples collected on site duri Results are below the laboratory respec Sample 'Not Tested' for this parameter	ng the 201 tive limit of	8 site investigations r detection (LOD) (mg	ecorded concentr I/kg)	rations <lod in="" td="" te<=""><td>rms of hydrocarbo</td><td>on parameters.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod>	rms of hydrocarbo	on parameters.																		

AV	WN Consulting Ltd.		Soil Samples during Site Invesitgation 2018						Guidline Values									
			Sample ID	TP18-02	TP18-04	TP18-06	TP18-08	TP18-09	TP18-10	TP18-10	TP18-11	TP18-11	TP18-13	TP18-16	PH18-01	PH18-04		
Report:	Solid (Soil samples)		Depth (m)	2.30	2.10	2.20	2.20	2.20	2.30	3.40	3.30	3.50	2.20	2.60	1.90	2.00	LOM/CIEH S4ul for HHRA	LOM/CIEH Saul for HHRA
Client:			Containers	V J	V J	V J	JT	JT	VJT	٧J	JT	JT	JT	JT	J	VJT	Residental Threshold at 1%	Commercial Threshold at
Client ref:	18_10021		Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	SOM (mg/kg)	1% SOM (mg/kg)
Location:	Cornelscourt, Co. Dublin		Sampled Date	12/03/2018	12/03/2018	12/03/2018	12/03/2018	12/03/2018	13/03/2018	13/03/2018	13/03/2018	13/03/2018	13/03/2018	13/03/2018	09/03/2018	09/03/2018		
CAS Number	Test	Units																
INTERPRETATION	EPH CWG Interpretation	None							Degraded diesel			Degarded Diesel					NA	NA
	TPH CWG																	
	Aliphatics		LOD															
GTC05C06AL	>C5-C6 [#]	mg/kg	<0.1	-	-	-	-	-	0.4	0.8	0.1	2.2	-	-	-	-	160	3200 (304) sol
GTC06C08AL	>C6-C8 [#]	mg/kg	<0.1	-	-	-	-	-	2	4.8	0.3	6.8	-	0.1	-	-	530	7800(144)sol
GTC08C10AL	>C8-C10	mg/kg	<0.1	-	-	-	-	-	6.4	7.3	6	26.6	-	3.9	-	-	150	2000(78)sol
GTC10C12AL	>C10-C12#	mg/kg	<0.2	-	-	-	-	-	34.8	75.2	80.4	100.6	-	56.1	-	-	770	9700(48)sol
GTC12C16AL	>C12-C16"	mg/kg	<4	-	-	-	-	-	76	178	255	242	-	192	-	-	4400	59000(24)sol
GTC16C21AL	>C16-C21 "	mg/kg	<7	-	-	-	-	-	81	181	276	260	-	219	-	-		
GTC21C35AL	>C21-C35 "	mg/kg	<7	-	-	-	-	-	28	57	101	92	-	84	-	-	65000 (combined)	1600000 (combined)
GTC05C35AL	Total aliphatics C5-35	mg/kg	<19	-	-	-	-	-	229	504	719	730	-	555	-	-	-	-
TM36/PM12	>C6-C10	mg/kg	<0.1	NT	NT	NT	NT	NT	8.4	NT	NT	33.4	NT	NT	NT	NT	-	-
TM5/PM8/PM16	>C10-C25	mg/kg	<10	NT	NT	NT	NT	NT	207	NT	NT	698	NT	NT	NT	NT	-	-
TM5/PM8/PM16	>C25-C35	mg/kg	<10	NT	NT	NT	NT	NT	-	NT	NT	13	NT	NT	NT	NT	-	-
	Aromatics																	
GTEC05EC07AR	>C5-EC7 #	mg/kg	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	1400	26000(1220)sol
GTEC07EC08AR	>EC7-EC8 #	mg/kg	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	3900	56000(869)vap
GTEC08EC10AR	>EC8-EC10 #	mg/kg	<0.1	-	-	-	-	-	0.6	0.2	-	4.6	-	-	-	-	270	3500(613)vap
GTEC10EC12AR	>EC10-EC12"	mg/kg	<0.2	-	-	-	-	-	24.2	53.2	23.2	85.3	-	23.2	-	-	1200	16000(364)sol
GTEC12EC16AR	>EC12-EC16#	mg/kg	<4	-	-	-	-	-	43	95	150	181	-	134	-	-	2500	36000(169)sol
GTEC16EC21AR	>EC16-EC21 "	mg/kg	<7	-	-	-	-	-	59	121	206	190	-	176	-	-	1900	28000
GTEC21EC35AR	>EC21-EC35*	mg/kg	<7	-	-	-	-	-	23	42	66	57	-	54	-	-	1900	28000
GTEC05EC35AR	Total aromatics C5-35 #	mg/kg	<19	-	-	-	-	-	150	311	445	518	-	387	-	-	-	-
GTC05C35ALAR	Total aliphatics and aromatics(C5-35)	mg/kg	<38		-	•	-		379	815	1164	1248	-	942	-	-	-	-
1634-04-4	MTBE #	ug/kg	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
71-43-2	Benzene "	ug/kg	<5	-	-	-	-	-	0.009	0.107	-	-	-	-	-	-	380	27000
108-88-3	Toluene "	ug/kg	<5	-	-	-	-	-	0.02	0.035	-	-	-	-	-	-	3900000	5600000(869)vap
100-41-4	Ethylbenzene #	ug/kg	<5	-	-	-	-	-	0.035	0.041	-	1.073	-	-	-	-	440000	5700000(518)vap
P_M_XYLENE	m/p-Xylene #	ug/kg	<5	-	-	-	-	-	0.425	0.115	0.097	3.483	-	0.038	-	-	450000	m: 6200000(625)vap p: 5900000(576)sol
95-47-6	o-Xylene #	ug/kg	<5	-	-	-	-	-	0.062	0.091	-	-	-	-	-	-	48000	6600000(478)sol
-	Total Mineral Oil	mg/kg	<1	-	-	-	-	-	220	-	-	695	-	-	-	-		

Legend

16.4 Results exceed LQM/CIEH S4ul for HHRA Residental Threshold at 1% SOM (mg/kg)

16.4 Results exceed LQM/CIEH S4ul for HHRA Commerical & Residential Threshold at 1% SOM (mg/kg)

- Guideline threshold value not available

Notes HHRA 2015 - LQM/CIEH Suitable 4 Use Levels based on 'Commercial' and/or 'resedential' land use using 1% SOM

Sol : sol S4UL presented exceed the solubility saturation limit, which is presented in brackets

Vap: vap S4UL presented exceed the vapour stauration limit which is prensted in brackets

- Result is below the laboratory respective limit of detection (LOD) NT Sample not tested for that paramter

APPENDIX C

Model Input Files

Summary of Input Values Used in Fate and Transport Model

Model Description:

Source media: Unsaturated zone soil (depleting source) Depleting source Offsite exposure models:

Leaching to groundwater and groundwater transport to downgradient well Offsite outdoor air emissions from groundwater Vapour intrusion to indoor air from groundwater Indoor air model: Johnson and Ettinger model

Unsaturated Zone Soil Source		
Depth to top of contamination	m	1.0E-01
Thickness of contamination	m	1.0E+00
Length of source	m	3.0E+01
Width of source	m	3.2E+01
Depth to groundwater (from bottom of	m	2 0E+00
source)		2.02100

Unsaturated Zone Properties		
Total Porosity in vadose zone	cm3/cm3	3.9E-01
Water content	cm3/cm3	1.0E-01
Depth to groundwater (from ground surface)	m	3.1E+00

Chemical Degradation Rate	e in	
Ethylbenzene	1/d	3.0E-03
TPH Aliphatic C5-6	1/d	0.0E+00
TPH Aliphatic C6-8	1/d	0.0E+00
TPH Aliphatic C8-10	1/d	0.0E+00
TPH Aliphatic C10-12	1/d	0.0E+00
TPH Aliphatic C12-16	1/d	0.0E+00
TPH Aliphatic C16-35	1/d	0.0E+00
TPH Aromatic C7-8	1/d	0.0E+00
TPH Aromatic C8-10	1/d	0.0E+00
TPH Aromatic C10-12	1/d	0.0E+00
TPH Aromatic C12-16	1/d	0.0E+00
TPH Aromatic C16-21	1/d	0.0E+00
TPH Aromatic C21-35	1/d	0.0E+00
Xylenes (m-)	1/d	1.3E-02

Lens not used

Outdoor Box Model Parameters		
Height of box (breathing zone)	m	2.0E+00
Length of box	m	1.0E+01
Width of box	m	1.0E+01
Wind speed	m/s	2.3E+00

Aquifer Properties		
Effective porosity	cm3/cm3	2.0E-01
Fraction organic carbon	g oc/g soil	1.0E-02
Hydraulic conductivity	m/d	1.1E-01
Soil bulk density	g/cm3	1.6E+00
Hydraulic gradient	m/m	8.0E-03

```
Receptor Well Location
```

Distance downgradient	m	1.0E+00
Distance cross-gradient	m	0.0E+00
Depth to top of well screen	m	0.0E+00
Depth to bottom of well screen	m	2.0E+00
Number of vertical points used to calculate conc.	-	2.0E+00
calculated. See output file.		
Transverse dispersivity code calculated. See output file.		
Vertical dispersivity code calculated. See output file.		

Unsaturated Zone	Properties								
Beneath Building									
Total porosity		cm3/cm3	3.9E-01						
Water content		cm3/cm3	2.0E-01						
Air content		cm3/cm3	1.9E-01						
Distance from groundwater to	building	m	3.0E+00						
Bioattenuation factor		-	1.0E+00						

Capillary Fringe		
Thickness of the capillary fringe	cm	3.0E+01
Air content	-	3.0E-02
Water content	-	3.6E-01

Building Parameters		
Diffusion only case		
Foundation thickness	cm	1.5E+01
Fraction of cracks	-	2.0E-03
Porosity in cracks	cm3/cm3	2.5E-01
Water content in cracks	cm3/cm3	0.0E+00
Enclosed space floor length	m	1.0E+01
Enclosed space floor width	m	1.0E+01
Enclosed space height	m	3.0E+00
Volume of building	m3	3.0E+02
Number of air changes per hour	1/hr	5.0E-01

Source Concentration Unsaturated Zone Model (mg/kg	for)	
Ethylbenzene	mg/kg	1.1E+00
TPH Aliphatic C5-6	mg/kg	2.2E+00
TPH Aliphatic C6-8	mg/kg	6.8E+00
TPH Aliphatic C8-10	mg/kg	2.7E+01
TPH Aliphatic C10-12	mg/kg	1.0E+02
TPH Aliphatic C12-16	mg/kg	2.6E+02
TPH Aliphatic C16-35	mg/kg	3.8E+02
TPH Aromatic C7-8	mg/kg	1.0E-01
TPH Aromatic C8-10	mg/kg	4.6E+00
TPH Aromatic C10-12	mg/kg	8.5E+01
TPH Aromatic C12-16	mg/kg	1.8E+02
TPH Aromatic C16-21	mg/kg	2.1E+02
TPH Aromatic C21-35	mg/kg	6.6E+01
Xylenes (m-)	mg/kg	3.5E+00

Summary of Input Data for Risk Calculation

Description:

06-19-2018 22:29:09

Receptors:

Date:

Adult Resident - Mean

Routes:

Inhalation of Indoor Air Inhalation of Outdoor Air

Chemicals:

Ethylbenzene
TPH Aliphatic C5-6
TPH Aliphatic C6-8
TPH Aliphatic C8-10
TPH Aliphatic C10-12
TPH Aliphatic C12-16
TPH Aliphatic C16-35
TPH Aromatic C7-8
TPH Aromatic C8-10
TPH Aromatic C10-12
TPH Aromatic C12-16
TPH Aromatic C16-21
TPH Aromatic C21-35
Xylenes (m-)

Exposure Parameters

Exposure Pathway	Units	Adult Resident - Mean
Body weight	kg	71.8
Averaging time for carcinogens	yr	70
Exposure duration	yr	9

Inhalation of Indoor Air	Units	Adult Resident - Mean
Exposure frequency for indoor air	events/yr	350
Time indoors	hr/d	18.3
Inhalation rate indoors	m3/hr	0.625

Inhalation of Outdoor Air	Units	Adult Resident - Mean
Exposure frequency for outdoor air	events/yr	40
Time outdoors	hr/d	1.1
Inhalation rate outdoors	m3/hr	1.6

APPENDIX D

Model Output

SUMMARY OF CARCINOGENIC RISK

Receptor 1: Adult Resident - Mean

Chemical	Inhalation of Indoor Air	Inhalation of Outdoor Air	TOTAL
Ethylbenzene	2.0E-11	1.5E-16	2.0E-11
TPH Aliphatic C5-6	ND	ND	ND
TPH Aliphatic C6-8	ND	ND	ND
TPH Aliphatic C8-10	ND	ND	ND
TPH Aliphatic C10-12	ND	ND	ND
TPH Aliphatic C12-16	ND	ND	ND
TPH Aliphatic C16-35	ND	ND	ND
TPH Aromatic C7-8	ND	ND	ND
TPH Aromatic C8-10	ND	ND	ND
TPH Aromatic C10-12	ND	ND	ND
TPH Aromatic C12-16	ND	ND	ND
TPH Aromatic C16-21	ND	ND	ND
TPH Aromatic C21-35	ND	ND	ND
Xylenes (m-)	ND	ND	ND
TOTAL	2.0E-11	1.5E-16	2.0E-11

SUMMARY OF HAZARD QUOTIENTS

Receptor 1: Adult Resident - Mean

Chemical	Inhalation of Indoor Air	Inhalation of Outdoor Air	TOTAL
Ethylbenzene	6.1E-08	4.7E-13	6.1E-08
TPH Aliphatic C5-6	0.0E+00	0.0E+00	ND
TPH Aliphatic C6-8	0.0E+00	0.0E+00	ND
TPH Aliphatic C8-10	0.0E+00	0.0E+00	ND
TPH Aliphatic C10-12	0.0E+00	0.0E+00	ND
TPH Aliphatic C12-16	0.0E+00	0.0E+00	ND
TPH Aliphatic C16-35	ND	ND	ND
TPH Aromatic C7-8	1.6E-07	1.3E-12	1.6E-07
TPH Aromatic C8-10	0.0E+00	0.0E+00	ND
TPH Aromatic C10-12	0.0E+00	0.0E+00	ND
TPH Aromatic C12-16	0.0E+00	0.0E+00	ND
TPH Aromatic C16-21	ND	ND	ND
TPH Aromatic C21-35	ND	ND	ND
Xylenes (m-)	2.1E-08	1.7E-13	2.1E-08
TOTAL	2.5E-07	1.9E-12	2.5E-07